Trắc nghiệm Hệ phương trình đối xứng Toán 9

Đề bài

Câu 1 :

Để hệ phương trình $\left\{ \begin{array}{l}x + y = S\\x.y = P\end{array} \right.$ có nghiệm, điều kiện cần và đủ là:

  • A.

    ${S^2}-P < 0.$ 

  • B.

    ${S^2}-P \ge 0.$

  • C.

    ${S^2}-4P < 0.$

  • D.

    ${S^2}-4P \ge 0.$

Câu 2 :

Hệ phương trình  \(\left\{ \begin{array}{l}{x^2} + {y^2} = 4\\x + y = 2\end{array} \right.\) có nghiệm là \(\left( {x;y} \right)\) với \(x > y\) . Khi đó tích $xy$ bằng

  • A.

    $0$

  • B.

    $1$

  • C.

    $2$

  • D.

    $4$

Câu 3 :

Hệ phương trình $\left\{ {\begin{array}{*{20}{c}}{x.y + x + y = 11}\\{{x^2}y + x{y^2} = 30}\end{array}} \right.$

  • A.

    $2$ nghiệm \(\left( {2;3} \right)\)\(\left( {1;5} \right)\).

  • B.

    có 2 nghiệm \(\left( {2;1} \right)\)\(\left( {3;5} \right)\).

  • C.

    $1$  nghiệm là \(\left( {5;6} \right).\) 

  • D.

    có 4 nghiệm $\left( {2;3} \right),\left( {3;2} \right),\left( {1;5} \right),\left( {5;1} \right).$

Câu 4 :

Hãy chỉ ra các cặp nghiệm khác $0$ của hệ phương trình: $\left\{ \begin{array}{l}{x^2} = 5x - 2y\\{y^2} = 5y - 2x\end{array} \right.$

  • A.

    \(\left( {3;3} \right).\) 

  • B.

    \(\left( {2;2} \right);\left( {3;1} \right);\left( { - 3;6} \right).\)

  • C.

     \(\left( {1;1} \right),\left( {2;2} \right),\left( {3;3} \right).\)

  • D.

    \(\left( { - 2; - 2} \right),\left( {1; - 2} \right),\left( { - 6;3} \right)\)

Câu 5 :

Hệ phương trình $\left\{ \begin{array}{l}{x^2} + y = 6\\{y^2} + x = 6\end{array} \right.$ có bao nhiêu nghiệm ?

  • A.

    \(6.\) 

  • B.

    \(4.\) 

  • C.

    \(2.\) 

  • D.

    \(0.\) 

Câu 6 :

Hệ phương trình $\left\{ \begin{array}{l}x + y + xy = 5\\{x^2} + {y^2} = 5\end{array} \right.$có bao nhiêu nghiệm?

  • A.

    $0$

  • B.

    $1$

  • C.

    $2$

  • D.

    $4$

Câu 7 :

Biết cặp số \(\left( {x;y} \right)\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + y = m\\{x^2} + {y^2} =  - {m^2} + 6\end{array} \right.\) . Tìm giá trị của \(m\) để \(P = xy + 2\left( {x + y} \right)\) đạt giá trị nhỏ nhất.

  • A.

    \(m =  - 1\) 

  • B.

    \(m =  - 2\) 

  • C.

    \(m = 1\) 

  • D.

    \(m = 0\) 

Câu 8 :

Biết hệ phương trình \(\left\{ \begin{array}{l}{x^3} + {y^3} = 19\\\left( {x + y} \right)\left( {8 + xy} \right) = 2\end{array} \right.\) có hai nghiệm $\left( {{x_1};{y_1}} \right);\left( {{x_2};{y_2}} \right)$ . Tổng \({x_1} + {x_2}\) bằng

  • A.

    \( - 1\)

  • B.

    \(2\) 

  • C.

    \(1\) 

  • D.

    \(0\) 

Câu 9 :

Hệ phương trình \(\left\{ \begin{array}{l}{x^3} - 8x = {y^3} + 2y\\{x^2} - 3 = 3\left( {{y^2} + 1} \right)\end{array} \right.\) có bao nhiêu nghiệm?

  • A.

    \(3\) 

  • B.

    \(5\) 

  • C.

    \(4\) 

  • D.

    \(6\) 

Câu 10 :

Cho hệ phương trình $\left\{ \begin{array}{l}x + y = 4\\{x^2} + {y^2} = {m^2}\end{array} \right.$ . Khẳng định nào sau đây là đúng ?

  • A.

    Hệ phương trình có nghiệm với mọi \(m\).

  • B.

    Hệ phương trình có nghiệm$ \Leftrightarrow \left| m \right| \ge \sqrt 8 $.

  • C.

    Hệ phương trình có nghiệm $ \Leftrightarrow m \ge \sqrt 8 $

  • D.

    Hệ phương trình luôn vô nghiệm.

Lời giải và đáp án

Câu 1 :

Để hệ phương trình $\left\{ \begin{array}{l}x + y = S\\x.y = P\end{array} \right.$ có nghiệm, điều kiện cần và đủ là:

  • A.

    ${S^2}-P < 0.$ 

  • B.

    ${S^2}-P \ge 0.$

  • C.

    ${S^2}-4P < 0.$

  • D.

    ${S^2}-4P \ge 0.$

Đáp án : D

Lời giải chi tiết :

Hệ phương trình đối xứng loại 1 với cách đặt  \(\left\{ \begin{array}{l}S = x + y\\P = x.y\end{array} \right.\) điều kiện \({S^2} \ge 4P \Leftrightarrow {S^2} - 4P \ge 0\).

Câu 2 :

Hệ phương trình  \(\left\{ \begin{array}{l}{x^2} + {y^2} = 4\\x + y = 2\end{array} \right.\) có nghiệm là \(\left( {x;y} \right)\) với \(x > y\) . Khi đó tích $xy$ bằng

  • A.

    $0$

  • B.

    $1$

  • C.

    $2$

  • D.

    $4$

Đáp án : A

Phương pháp giải :

+ Thêm bớt phương trình đầu để xuất hiện tổng \(x + y\) và tích $xy$

+ Sử dụng phương pháp thế

Lời giải chi tiết :

Ta có \(\left\{ \begin{array}{l}{x^2} + {y^2} = 4\\x + y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} + 2xy - 2xy = 4\\x + y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {x + y} \right)^2} - 2xy = 4\\x + y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 2\\xy = 0\end{array} \right.\)

Từ \(xy = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 2\\y = 0 \Rightarrow x = 2\end{array} \right.\)

Vậy hệ phương trình có hai nghiệm \(\left( {x;y} \right) = \left( {0;2} \right);\left( {x;y} \right) = \left( {2;0} \right)\)

Từ giả thiết \(x > y\) nên $x = 2;y = 0 \Rightarrow xy = 0$

Câu 3 :

Hệ phương trình $\left\{ {\begin{array}{*{20}{c}}{x.y + x + y = 11}\\{{x^2}y + x{y^2} = 30}\end{array}} \right.$

  • A.

    $2$ nghiệm \(\left( {2;3} \right)\)\(\left( {1;5} \right)\).

  • B.

    có 2 nghiệm \(\left( {2;1} \right)\)\(\left( {3;5} \right)\).

  • C.

    $1$  nghiệm là \(\left( {5;6} \right).\) 

  • D.

    có 4 nghiệm $\left( {2;3} \right),\left( {3;2} \right),\left( {1;5} \right),\left( {5;1} \right).$

Đáp án : D

Phương pháp giải :

+ Đặt \(S = x + y;P = xy\) ta được hệ phương trình ẩn $S,P$

+ Sử dụng phương pháp thế để tìm \(S,P\) . Kiểm tra điều kiện \({S^2} \ge 4P\) sau đó thay trở lại cách đặt để tìm \(x;y\)

Lời giải chi tiết :

Ta có $\left\{ {\begin{array}{*{20}{c}}{x.y + x + y = 11}\\{{x^2}y + x{y^2} = 30}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}xy + x + y = 11\\xy\left( {x + y} \right) = 30\end{array} \right.$

Đặt \(S = x + y;P = xy\,\left( {{S^2} \ge 4P} \right)\) ta có hệ \(\left\{ \begin{array}{l}S + P = 11\\S.P = 30\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}S = 11 - P\\\left( {11 - P} \right).P = 30\,\,\,\left( 1 \right)\end{array} \right.\)

 

Xét phương trình \(\left( 1 \right):\)

 \(\,11P - {P^2} - 30 = 0 \Leftrightarrow {P^2} - 11P + 30 = 0 \Leftrightarrow \left( {P - 5} \right)\left( {P - 6} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}P = 5 \Rightarrow S = 6\\P = 6 \Rightarrow S = 5\end{array} \right.\) ( tm \({S^2} \ge 4P\))

Với \(P = 5;S = 6 \Rightarrow \left\{ \begin{array}{l}xy = 5\\x + y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 6 - x\\x\left( {6 - x} \right) - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 6 - x\\{x^2} - 6x + 5 = 0\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 1\\y = 5\end{array} \right.\\\left\{ \begin{array}{l}x = 5\\y = 1\end{array} \right.\end{array} \right.\)

Với \(P = 6;S = 5\) \( \Rightarrow \left\{ \begin{array}{l}xy = 6\\x + y = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 5 - x\\x\left( {5 - x} \right) - 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 5 - x\\{x^2} - 5x + 6 = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\\\left\{ \begin{array}{l}x = 3\\y = 2\end{array} \right.\end{array} \right.\)

Vậy hệ phương trình có bốn nghiệm $\left( {2;3} \right),\left( {3;2} \right),\left( {1;5} \right),\left( {5;1} \right).$

Câu 4 :

Hãy chỉ ra các cặp nghiệm khác $0$ của hệ phương trình: $\left\{ \begin{array}{l}{x^2} = 5x - 2y\\{y^2} = 5y - 2x\end{array} \right.$

  • A.

    \(\left( {3;3} \right).\) 

  • B.

    \(\left( {2;2} \right);\left( {3;1} \right);\left( { - 3;6} \right).\)

  • C.

     \(\left( {1;1} \right),\left( {2;2} \right),\left( {3;3} \right).\)

  • D.

    \(\left( { - 2; - 2} \right),\left( {1; - 2} \right),\left( { - 6;3} \right)\)

Đáp án : A

Phương pháp giải :

Giải hệ phương trình đối xứng loại 2.

+ Thực hiện phép trừ vế với vế của hai phương trình ta thu được phương trình tích.

+ Giải phương trình thu được sau đó kết hợp với phương trình còn lại ta tìm được \(x;y\)

Lời giải chi tiết :

Trừ vế với vế của hai phương trình ta được \({x^2} - {y^2} = 5x - 2y - \left( {5y - 2x} \right) \Leftrightarrow {x^2} - {y^2} = 7\left( {x - y} \right)\)

\( \Leftrightarrow \left( {x - y} \right)\left( {x + y} \right) - 7\left( {x - y} \right) = 0 \Leftrightarrow \left( {x - y} \right)\left( {x + y - 7} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = y\\x = 7 - y\end{array} \right.\)

+Với $x = y$ ta có hệ \(\left\{ \begin{array}{l}x = y\\{x^2} = 5x - 2y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = y\\{x^2} - 3x = 0\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = y = 0\\x = y = 3\end{array} \right.\)

+Với \(x = 7 - y\) ta có hệ \(\left\{ \begin{array}{l}x = 7 - y\\{y^2} = 5y - 2x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 7 - y\\{y^2} = 5y - 2\left( {7 - y} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 7 - y\\{y^2} - 7y + 14 = 0\end{array} \right.\) (*)

Vì \({y^2} - 7y + 14 = {\left( {y - \dfrac{7}{2}} \right)^2} + \dfrac{7}{4} > 0\) nên hệ (*) vô nghiệm.

Vậy nghiệm khác \(0\) của hệ là \(\left( {3;3} \right)\) .

Câu 5 :

Hệ phương trình $\left\{ \begin{array}{l}{x^2} + y = 6\\{y^2} + x = 6\end{array} \right.$ có bao nhiêu nghiệm ?

  • A.

    \(6.\) 

  • B.

    \(4.\) 

  • C.

    \(2.\) 

  • D.

    \(0.\) 

Đáp án : B

Phương pháp giải :

Giải hệ phương trình đối xứng loại 2.

+ Thực hiện phép trừ vế với vế của hai phương trình ta thu được phương trình tích.

+ Giải phương trình thu được sau đó kết hợp với phương trình còn lại ta tìm được \(x;y\)

Lời giải chi tiết :

Trừ vế với vế của hai phương trình ta được

\({x^2} - {y^2} + y - x = 0\)\( \Leftrightarrow \left( {x - y} \right)\left( {x + y} \right) - \left( {x - y} \right) = 0\)\( \Leftrightarrow \left( {x - y} \right)\left( {x + y - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = y\\x = 1 - y\end{array} \right.\)

Với $x = y$ ta có hệ \(\left\{ \begin{array}{l}x = y\\{x^2} + x - 6 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = y\\\left( {x - 2} \right)\left( {x + 3} \right) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = y = 2\\x = y =  - 3\end{array} \right.\)

Với \(x = 1 - y\) ta có hệ \(\left\{ \begin{array}{l}x = 1 - y\\{y^2} + 1 - y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 - y\\{y^2} - y - 5 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x = 1 - y\\{\left( {y - \dfrac{1}{2}} \right)^2} - \dfrac{{21}}{4} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 - y\\{\left( {y - \dfrac{1}{2}} \right)^2} = \dfrac{{21}}{4}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = 1 - y\\\left[ \begin{array}{l}y = \dfrac{{\sqrt {21}  + 1}}{2}\\y = \dfrac{{1 - \sqrt {21} }}{2}\end{array} \right.\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}y = \dfrac{{\sqrt {21}  + 1}}{2}\\x = \dfrac{{1 - \sqrt {21} }}{2}\end{array} \right.\\\left\{ \begin{array}{l}y = \dfrac{{1 - \sqrt {21} }}{2}\\x = \dfrac{{1 + \sqrt {21} }}{2}\end{array} \right.\end{array} \right.\)

Vậy hệ phương trình có bốn nghiệm \(\left( {2;2} \right);\left( { - 3; - 3} \right);\left( {\dfrac{{1 + \sqrt {21} }}{2};\dfrac{{1 - \sqrt {21} }}{2}} \right);\left( {\dfrac{{1 - \sqrt {21} }}{2};\dfrac{{1 + \sqrt {21} }}{2}} \right)\)

Câu 6 :

Hệ phương trình $\left\{ \begin{array}{l}x + y + xy = 5\\{x^2} + {y^2} = 5\end{array} \right.$có bao nhiêu nghiệm?

  • A.

    $0$

  • B.

    $1$

  • C.

    $2$

  • D.

    $4$

Đáp án : C

Phương pháp giải :

+ Thêm bớt phương trình dưới để xuất hiện tổng \(x + y\) và tích $xy$

+ Đặt \(S = x + y;P = xy\) ta được hệ phương trình ẩn $S,P$

+ Sử dụng phương pháp thế để tìm \(S,P\) . Kiểm tra điều kiện \({S^2} \ge 4P\) sau đó thay trở lại cách đặt để tìm \(x;y\)

Lời giải chi tiết :

+ Ta có \(\left\{ \begin{array}{l}x + y + xy = 5\\{\left( {x + y} \right)^2} - 2xy = 5\end{array} \right.\)

+ Đặt \(S = x + y;P = xy\) ta được hệ phương trình \(\left\{ \begin{array}{l}S + P = 5\\{S^2} - 2P = 5\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}P = 5 - S\\{S^2} - 2\left( {5 - S} \right) = 5\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}P = 5 - S\\{S^2} + 2S - 15 = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}P = 5 - S\\\left[ \begin{array}{l}S = 3\\S =  - 5\end{array} \right.\end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}S = 3\\P = 2\end{array} \right.\\\left\{ \begin{array}{l}S =  - 5\\P = 10\end{array} \right.\end{array} \right.\)  mà \({S^2} \ge 4P\) nên \(S = 3;P = 2\)

+ Khi đó \(\left\{ \begin{array}{l}xy = 2\\x + y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 3 - x\\x\left( {3 - x} \right) - 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 3 - x\\{x^2} - 3x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1;y = 2\\x = 2;y = 1\end{array} \right.\)

Vậy hệ phương trình có hai nghiệm.

Câu 7 :

Biết cặp số \(\left( {x;y} \right)\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + y = m\\{x^2} + {y^2} =  - {m^2} + 6\end{array} \right.\) . Tìm giá trị của \(m\) để \(P = xy + 2\left( {x + y} \right)\) đạt giá trị nhỏ nhất.

  • A.

    \(m =  - 1\) 

  • B.

    \(m =  - 2\) 

  • C.

    \(m = 1\) 

  • D.

    \(m = 0\) 

Đáp án : A

Phương pháp giải :

+ Biến đổi phương trình để xuất hiện tổng $S = x + y$ và tích $P = xy$

+ Sử dụng điều kiện có nghiệm của hệ đối xứng loại 1 : \({S^2} - 4P \ge 0\) để tìm điều kiện của \(m\)

+ Thay tổng $x + y$ và tích $xy$  vào \(P\) sau đó đánh giá \(P\) theo \(m\) .

Lời giải chi tiết :

+ Ta có \(\left\{ \begin{array}{l}x + y = m\\{x^2} + {y^2} =  - {m^2} + 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x + y = m\\{\left( {x + y} \right)^2} - 2xy =  - {m^2} + 6\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x + y = m\\{m^2} - 2xy =  - {m^2} + 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = m\\xy = {m^2} - 3\end{array} \right.\)

Điều kiện để hệ trên có nghiệm là \({m^2} - 4\left( {{m^2} - 3} \right) \ge 0 \Leftrightarrow 12 - 3{m^2} \ge 0\) \( \Leftrightarrow {m^2} - 4 \le 0 \Leftrightarrow  - 2 \le m \le 2\)

Khi đó thay \(x + y = m;xy = {m^2} - 3\) vào \(P\) ta được \(P = {m^2} - 3 + 2m = {\left( {m + 1} \right)^2} - 4 \ge  - 4\)

Dấu ‘=’ xảy ra khi \(m + 1 = 0 \Leftrightarrow m =  - 1\) (thỏa mãn)

Vậy \({P_{\min }} =  - 4 \Leftrightarrow m =  - 1\)

Câu 8 :

Biết hệ phương trình \(\left\{ \begin{array}{l}{x^3} + {y^3} = 19\\\left( {x + y} \right)\left( {8 + xy} \right) = 2\end{array} \right.\) có hai nghiệm $\left( {{x_1};{y_1}} \right);\left( {{x_2};{y_2}} \right)$ . Tổng \({x_1} + {x_2}\) bằng

  • A.

    \( - 1\)

  • B.

    \(2\) 

  • C.

    \(1\) 

  • D.

    \(0\) 

Đáp án : C

Phương pháp giải :

+ Sử dụng hằng đẳng thức biến đổi phương trình đầu tiên sao cho xuất hiện \(x + y\) và $xy$

 + Đặt \(S = x + y;P = xy\) ta được hệ phương trình ẩn $S,P$

+ Sử dụng phương pháp thế để tìm \(S,P\) . Kiểm tra điều kiện \({S^2} \ge 4P\) sau đó thay trở lại cách đặt để tìm \(x;y\)

+ \(x;y\) là nghiệm của phương trình ${X^2} - SX + P = 0$ .

Lời giải chi tiết :

+ Ta có  \(\left\{ \begin{array}{l}{x^3} + {y^3} = 19\\\left( {x + y} \right)\left( {8 + xy} \right) = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left( {x + y} \right)\left( {{x^2} - xy + {y^2}} \right) = 19\\\left( {x + y} \right)\left( {8 + xy} \right) = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x + y} \right)\left[ {{{\left( {x + y} \right)}^2} - 3xy} \right] = 19\\\left( {x + y} \right)\left( {8 + xy} \right) = 2\end{array} \right.\)

+ Đặt  \(\left\{ \begin{array}{l}S = x + y\\P = x.y\end{array} \right.\) điều kiện \({S^2} \ge 4P\) hệ phương trình đã cho trở thành:

     \(\left\{ \begin{array}{l}S\left( {{S^2} - 3P} \right) = 19\\S\left( {8 + P} \right) = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}SP = 2 - 8S\\{S^3} - 3\left( {2 - 8S} \right) = 19\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}SP = 2 - 8S\\{S^3} + 24S - 25 = 0\end{array} \right.\)

 \( \Leftrightarrow \left\{ \begin{array}{l}SP = 2 - 8S\\\left( {S - 1} \right)\left( {{S^2} + S + 25} \right) = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}S = 1\\P =  - 6\end{array} \right.\)(thỏa mãn)

+ Suy ra \(x,y\) là hai nghiệm của phương trình: \({X^2} - X - 6 = 0 \Leftrightarrow \left( {X - 3} \right)\left( {X + 2} \right) = 0 \Leftrightarrow {X_1} = 3;{X_2} =  - 2\)

Vậy hệ đã cho có hai cặp nghiệm \(\left( {x;y} \right) = \left( { - 2;3} \right),\left( {x;y} \right) = \left( {3; - 2} \right)\)

Từ đó \({x_1} =  - 2;{x_2} = 3 \Rightarrow {x_1} + {x_2} = 1\)

Câu 9 :

Hệ phương trình \(\left\{ \begin{array}{l}{x^3} - 8x = {y^3} + 2y\\{x^2} - 3 = 3\left( {{y^2} + 1} \right)\end{array} \right.\) có bao nhiêu nghiệm?

  • A.

    \(3\) 

  • B.

    \(5\) 

  • C.

    \(4\) 

  • D.

    \(6\) 

Đáp án : C

Phương pháp giải :

Sử dụng cách giải của hệ phương trình có yếu tố đẳng cấp:

+ Đặt \(y = tx\) sau đó biến đổi ta có phương trình ẩn \(t\)

+ Giải phương trình ta tìm được \(t\), từ đó ta tìm được \(x;y\) .

Lời giải chi tiết :

Ta có \(\left\{ \begin{array}{l}{x^3} - 8x = {y^3} + 2y\\{x^2} - 3 = 3\left( {{y^2} + 1} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x^3} - {y^3} = 8x + 2y\\{x^2} - 3{y^2} = 6\end{array} \right.\)

Vì thay \(x = 0\) vào hệ ta được \(\left\{ \begin{array}{l}0 - {y^3} = 0 + 2y\\0 - 3{y^2} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{y^2} =  - 2\\ - {y^3} = 2y\end{array} \right.\) (vô lý) nên \(x = 0\) không là nghiệm của hệ .

Đặt \(y = tx\),  Khi đó ta có

\(\left\{ \begin{array}{l}{x^3} - 8x = {t^3}{x^3} + 2tx\\{x^2} - 3 = 3\left( {{t^2}{x^2} + 1} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2}\left( {1 - {t^3}} \right) = 2t + 8\\{x^2}\left( {1 - 3{t^2}} \right) = 6\end{array} \right. \Rightarrow \dfrac{{1 - {t^3}}}{{1 - 3{t^2}}} = \dfrac{{t + 4}}{3}\)

\( \Leftrightarrow 3\left( {1 - {t^3}} \right) = \left( {t + 4} \right)\left( {1 - 3{t^2}} \right) \Leftrightarrow 12{t^2} - t - 1 = 0 \Leftrightarrow \left[ \begin{array}{l}t = \dfrac{1}{3}\\t =  - \dfrac{1}{4}\end{array} \right.\)

* \(t = \dfrac{1}{3} \Rightarrow \left\{ \begin{array}{l}{x^2}\left( {1 - 3{t^2}} \right) = 6\\y = \dfrac{x}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} = 9\\y = \dfrac{x}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  \pm 3\\y =  \pm 1\end{array} \right.\).

* \(t =  - \dfrac{1}{4} \Rightarrow \left\{ \begin{array}{l}y = \dfrac{{ - x}}{4}\\{x^2}\left( {1 - 3{t^2}} \right) = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  \pm \dfrac{{4\sqrt {78} }}{{13}}\\y =  \mp \dfrac{{\sqrt {78} }}{{13}}\end{array} \right.\).

Suy ra hệ phương trình có các cặp nghiệm: \((x;y) = \)\(\left( {3,\,1} \right);\,\left( { - 3,\, - 1} \right);\left( {\dfrac{{4\sqrt {78} }}{{13}},\,\dfrac{{\sqrt {78} }}{{13}}} \right);\,\left( { - \dfrac{{4\sqrt {78} }}{{13}},\, - \dfrac{{\sqrt {78} }}{{13}}} \right)\)

Câu 10 :

Cho hệ phương trình $\left\{ \begin{array}{l}x + y = 4\\{x^2} + {y^2} = {m^2}\end{array} \right.$ . Khẳng định nào sau đây là đúng ?

  • A.

    Hệ phương trình có nghiệm với mọi \(m\).

  • B.

    Hệ phương trình có nghiệm$ \Leftrightarrow \left| m \right| \ge \sqrt 8 $.

  • C.

    Hệ phương trình có nghiệm $ \Leftrightarrow m \ge \sqrt 8 $

  • D.

    Hệ phương trình luôn vô nghiệm.

Đáp án : B

Phương pháp giải :

+ Biến đổi hệ để xuất hiện tổng \(S = x + y;P = xy\)  đưa về hệ đối xứng loại 1

+ Sử dụng điều kiện ${S^2} - 4P \ge 0$ để tìm điều kiện của \(m\) .

Lời giải chi tiết :

Ta có : $\left\{ \begin{array}{l}x + y = 4\\{x^2} + {y^2} = {m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 4\\{\left( {x + y} \right)^2} - 2xy = {m^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 4\\xy = \dfrac{{16 - {m^2}}}{2}\end{array} \right.$$ \Rightarrow \left\{ \begin{array}{l}S = 4\\P = \dfrac{{16 - {m^2}}}{2}\end{array} \right.$

\( \Rightarrow {S^2} - 4P = 16 - 2\left( {16 - {m^2}} \right) = 2{m^2} - 16 \ge 0\)\( \Leftrightarrow \left| m \right| \ge \sqrt 8 \).

Trắc nghiệm Bài tập hay và khó chương 4: Sự tương giao của đường thẳng và parabol Toán 9

Luyện tập và củng cố kiến thức Bài tập hay và khó chương 4: Sự tương giao của đường thẳng và parabol Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Tổng hợp câu hay và khó về giải bài toán bằng cách lập phương trình, hệ phương trình Toán 9

Luyện tập và củng cố kiến thức Tổng hợp câu hay và khó về giải bài toán bằng cách lập phương trình, hệ phương trình Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Tổng hợp câu hay và khó về hệ thức Vi-et Toán 9

Luyện tập và củng cố kiến thức Tổng hợp câu hay và khó về hệ thức Vi-et Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài tập ôn tập chương 4 Toán 9

Luyện tập và củng cố kiến thức Bài tập ôn tập chương 4 Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 8: Giải bài toán bằng cách lập phương trình Toán 9

Luyện tập và củng cố kiến thức Bài 8: Giải bài toán bằng cách lập phương trình Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Sự tương giao giữa đường thẳng và Parabol Toán 9

Luyện tập và củng cố kiến thức Sự tương giao giữa đường thẳng và Parabol Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 7: Phương trình quy về phương trình bậc hai Toán 9

Luyện tập và củng cố kiến thức Bài 7: Phương trình quy về phương trình bậc hai Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 6: Hệ thức Vi-ét và ứng dụng Toán 9

Luyện tập và củng cố kiến thức Bài 6: Hệ thức Vi-ét và ứng dụng Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 5: Công thức nghiệm thu gọn Toán 9

Luyện tập và củng cố kiến thức Bài 5: Công thức nghiệm thu gọn Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 3,4: Phương trình bậc hai một ẩn và công thức nghiệm Toán 9

Luyện tập và củng cố kiến thức Bài 3,4: Phương trình bậc hai một ẩn và công thức nghiệm Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 1,2: Hàm số bậc hai một ẩn và đồ thị hàm số y=ax^2 Toán 9

Luyện tập và củng cố kiến thức Bài 1,2: Hàm số bậc hai một ẩn và đồ thị hàm số y=ax^2 Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết