Trắc nghiệm Bài tập hay và khó chương 3 về hệ phương trình Toán 9
Đề bài
Cho hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 5\\mx - y = 4\end{array} \right.\) \(\begin{array}{l}\left( 1 \right)\\\left( 2 \right)\end{array}\)
Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) trong đó $x,y$ trái dấu.
-
A.
\(m > \dfrac{4}{5}\)
-
B.
\(m < \dfrac{4}{5}\)
-
C.
\(m > \dfrac{5}{4}\)
-
D.
\(m < \dfrac{5}{4}\)
Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\) thỏa mãn $x = \left| y \right|$.
-
A.
\(m = \dfrac{7}{5}\)
-
B.
\(m = \dfrac{4}{5}\)
-
C.
\(m = \dfrac{5}{7}\)
-
D.
\(m = \dfrac{1}{5}\)
Cho hệ phương trình: \(\left\{ \begin{array}{l}x + my = m + 1\\mx + y = 3m - 1\end{array} \right.\) \(\begin{array}{l}\left( 1 \right)\\\left( 2 \right)\end{array}\)
Tìm số nguyên \(m\) sao cho hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) mà $x,y$ đều là số nguyên.
-
A.
\(m \in \left\{ { - 3; - 2} \right\}\)
-
B.
\(m \in \left\{ { - 3; - 2;0;1} \right\}\)
-
C.
\(m \in \left\{ { - 3; - 2;0} \right\}\)
-
D.
\(m = - 3\)
Trong trường hợp hệ có nghiệm duy nhất \(\left( {x;y} \right)\) thì điểm \(M\left( {x;y} \right)\) luôn chạy trên đường thẳng nào dưới đây?
-
A.
\(y = - x - 2\)
-
B.
\(y = x + 2\)
-
C.
\(y = x - 2\)
-
D.
\(y = 2 - x\)
Tìm \(m\) để hệ trên có nghiệm duy nhất sao cho \(x.y\) đạt giá trị nhỏ nhất
-
A.
\(m = 1\)
-
B.
\(m = 0\)
-
C.
\(m = 2\)
-
D.
\(m = - 1\)
Giải hệ phương trình \(\left\{ \begin{array}{l}{(x + y)^2} + y = 3\\2({x^2} + {y^2} + xy) + x = 5\end{array} \right.\) ta được số nghiệm là
-
A.
\(4\)
-
B.
\(3\)
-
C.
\(2\)
-
D.
\(1\)
Giải hệ phương trình \(\left\{ \begin{array}{l}xy - {y^2} = \sqrt {3y - 1} - \sqrt {x + 2y - 1} \,\,\, (1)\\{x^3}y - 4x{y^2} + 7xy - 5x - y + 2 = 0 \,\,\, (2)\end{array} \right.\)
( với \(x \in R,y \in R\)) ta được nghiệm là $(x;y).$ Khi đó $x.y$ bằng
-
A.
\(4\)
-
B.
\(1\)
-
C.
\(2\)
-
D.
\(3\)
Hệ phương trình \(\left\{ \begin{array}{l}x + y + 2xy = 2\\{x^3} + {y^3} = 8\end{array} \right.\) có bao nhiêu nghiệm?
-
A.
\(1\)
-
B.
\(0\)
-
C.
\(2\)
-
D.
\(4\)
Biết rằng hệ phương trình \(\left\{ \begin{array}{l}2\left( {x + y} \right) = 3\left( {\sqrt[3]{{{x^2}y}} + \sqrt[3]{{x{y^2}}}} \right)\\\sqrt[3]{x} + \sqrt[3]{y} = 6\end{array} \right.\) có hai cặp nghiệm \(\left( {{x_1};{y_1}} \right);\left( {{x_2};{y_2}} \right)\) . Tính \({x_1} + {x_2}\) .
-
A.
\(70\)
-
B.
\(80\)
-
C.
\(72\)
-
D.
\(64\)
Biết rằng hệ phương trình \(\left\{ \begin{array}{l}x + y - \sqrt {xy} = 3\\\sqrt {x + 1} + \sqrt {y + 1} = 4\end{array} \right.\) có nghiệm duy nhất \(\left( {x;y} \right)\) . Tính \(x + 2y\) .
-
A.
\(9\)
-
B.
\(6\)
-
C.
\(12\)
-
D.
\(3\)
Biết rằng hệ phương trình \(\left\{ \begin{array}{l}\sqrt {{x^2} + {y^2}} + \sqrt {2xy} = 8\sqrt 2 \\\sqrt x + \sqrt y = 4\end{array} \right.\) có nghiệm duy nhất \(\left( {x;y} \right)\) . Tính \(\dfrac{x}{y}\) .
-
A.
\(3\)
-
B.
\(\dfrac{1}{2}\)
-
C.
\(2\)
-
D.
\(1\)
Hệ phương trình \(\left\{ \begin{array}{l}\left( {x + y} \right)\left( {1 + \dfrac{1}{{xy}}} \right) = 5\\\left( {{x^2} + {y^2}} \right)\left( {1 + \dfrac{1}{{{x^2}{y^2}}}} \right) = 9\end{array} \right.\) có số nghiệm là
-
A.
\(3\)
-
B.
\(0\)
-
C.
\(4\)
-
D.
\(1\)
Hệ phương trình \(\left\{ \begin{array}{l}{x^3}y\left( {1 + y} \right) + {x^2}{y^2}\left( {2 + y} \right) + x{y^3} - 30 = 0\\{x^2}y + x\left( {1 + y + {y^2}} \right) + y - 11 = 0\end{array} \right.\) có bao nhiêu cặp nghiệm \(\left( {x;y} \right)\) mà \(x < 1\) ?
-
A.
\(3\)
-
B.
\(0\)
-
C.
\(2\)
-
D.
\(1\)
Hệ phương trình \(\left\{ \begin{array}{l}{x^2} + \sqrt x = 2y\\{y^2} + \sqrt y = 2x\end{array} \right.\) có bao nhiêu cặp nghiệm \(\left( {x;y} \right) \ne \left( {0;0} \right)\) ?
-
A.
\(3\)
-
B.
\(0\)
-
C.
\(2\)
-
D.
\(1\)
Hệ phương trình \(\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {{y^2} + 6} \right) = y\left( {{x^2} + 1} \right)\\\left( {y - 1} \right)\left( {{x^2} + 6} \right) = x\left( {{y^2} + 1} \right)\end{array} \right.\) có bao nhiêu cặp nghiệm \(\left( {x;y} \right)\) mà \(x > y\) ?
-
A.
\(1\)
-
B.
\(4\)
-
C.
\(2\)
-
D.
\(3\)
Cho hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{{xy}} = \dfrac{x}{z} + 1\\\dfrac{1}{{yz}} = \dfrac{y}{x} + 1\\\dfrac{1}{{zx}} = \dfrac{z}{y} + 1\end{array} \right.\). Số nghiệm của hệ phương trình trên là:
-
A.
$1$
-
B.
$3$
-
C.
$2$
-
D.
Vô nghiệm
Cho hệ phương trình \(\left\{ \begin{array}{l}{y^3} - {x^3} = 1\\{x^5} - {y^5} + xy = 0\end{array} \right.\) . Khẳng định nào trong các khẳng định sau đúng:
-
A.
Hệ phương trình đã cho có nghiệm \(x > 0\)
-
B.
Hệ phương trình đã cho có nghiệm \(y > 0\)
-
C.
Hệ phương trình đã cho vô nghiệm
-
D.
Hệ phương trình đã cho có nghiệm \(x = y\)
Cho \((x;y;z)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}{x^3} + 3{x^2} + 2x - 5 = y\\{y^3} + 3{y^2} + 2y - 5 = z\\{z^3} + 3{z^2} + 2z - 5 = x\end{array} \right.\)
Khẳng định nào trong các khẳng định sau là sai:
-
A.
\(x + y + z\) là số nguyên
-
B.
\(x + y + z > 1\)
-
C.
\(x + y + z < 6\)
-
D.
Không tồn tại giá trị \(x + y + z\)
Cho \((x;y;z)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}36{x^2}y - 60{x^2} + 25y = 0\\36{y^2}z - 60{y^2} + 25z = 0\\36{z^2}x - 60{z^2} + 25x = 0\end{array} \right.\)
Giá trị nhỏ nhất của \(A = x + y + z\) là:
-
A.
\(A = 0\)
-
B.
\(A = \dfrac{5}{2}\)
-
C.
\(A = 1\)
-
D.
\(A = - 2\)
Cho hệ phương trình $\left\{ \begin{array}{l}{\rm{ - ax}} + y = 3\\\left| {x + 1} \right| + y = 2\end{array} \right.$. Giá trị của a để hệ phương trình có nghiệm duy nhất là:
-
A.
\( - 2 \le a \le 1\)
-
B.
\(\left[ \begin{array}{l}a > 1\\a < - 1\end{array} \right.\)
-
C.
\( - 2 < a < 1\)
-
D.
\(\left[ \begin{array}{l}a \ge 1\\a < - 2\end{array} \right.\)
Giải hệ phương trình: \(\left\{ \begin{array}{l}\sqrt {2x + 3} + \sqrt {4 - y} = 4{\rm{ }}\left( 1 \right)\\\sqrt {2y + 3} + \sqrt {4 - x} = 4{\rm{ }}\left( 2 \right)\end{array} \right.\)
-
A.
\(S = \left( {x;y} \right) = \left\{ {\left( { - 3; - 3} \right),\left( {\dfrac{{11}}{9};\dfrac{{11}}{9}} \right)} \right\}\)
-
B.
\(S = \left( {x;y} \right) = \left\{ {\left( {3;3} \right),\left( { - \dfrac{{11}}{9}; - \dfrac{{11}}{9}} \right)} \right\}\)
-
C.
\(S = \left( {x;y} \right) = \left\{ {\left( {3;3} \right),\left( {\dfrac{{11}}{9};\dfrac{{11}}{9}} \right)} \right\}\)
-
D.
\(S = \left( {x;y} \right) = \left\{ {\left( { - 3; - 3} \right),\left( { - \dfrac{{11}}{9}; - \dfrac{{11}}{9}} \right)} \right\}\)
Giải hệ phương trình : \(\left\{ \begin{array}{l}\left( {x + y} \right)\left( {1 + \dfrac{1}{{xy}}} \right) = 5\\\left( {{x^2} + {y^2}} \right)\left( {1 + \dfrac{1}{{{x^2}{y^2}}}} \right) = 9\end{array} \right.\)
-
A.
\(\left( {x;\,y} \right) = \left\{ {\left( {1;\dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1;\dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2}; - 1} \right),\left( {\dfrac{{3 + \sqrt 5 }}{2}; - 1} \right)} \right\}\)
-
B.
\(\left( {x;\,y} \right) = \left\{ {\left( {1; - \dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1; - \dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};1} \right),\left( {\dfrac{{3 + \sqrt 5 }}{2};1} \right)} \right\}\)
-
C.
\(\left( {x;\,y} \right) = \left\{ {\left( { - 1; - \dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1;\dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};1} \right),\left( { - \dfrac{{3 + \sqrt 5 }}{2}; - 1} \right)} \right\}\)
-
D.
\(\left( {x;\,y} \right) = \left\{ {\left( {1;\dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1;\dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};1} \right),\left( {\dfrac{{3 + \sqrt 5 }}{2};1} \right)} \right\}\)
Giải hệ phương trình \(\left\{ \begin{array}{l}{x^2} = 2x - y\\{y^2} = 2y - z\\{z^2} = 2z - t\\{t^2} = 2t - x\end{array} \right.\)
-
A.
\(\left( {x;\,y;\,z;\,t} \right) = \left\{ {\left( {0;0;0;0} \right);\left( { - 1; - 1; - 1; - 1} \right)} \right\}\)
-
B.
\(\left( {x;\,y;\,z;\,t} \right) = \left\{ {\left( {0;0;0;0} \right);\left( {2;2;2;2} \right)} \right\}\)
-
C.
\(\left( {x;\,y;\,z;\,t} \right) = \left\{ {\left( {1;1;1;1} \right);\left( {2;2;2;2} \right)} \right\}\)
-
D.
\(\left( {x;\,y;\,z;\,t} \right) = \left\{ {\left( {0;0;0;0} \right);\left( {1;1;1;1} \right)} \right\}\)
Tìm các số thực \(x\) và \(y\) thỏa mãn \(\left\{ \begin{array}{l}{x^3} = {y^2} + 18\\{y^3} = {x^2} + 18\end{array} \right.\).
-
A.
\(\left ( x;y \right ) = \left ( 1;1 \right )\)
-
B.
\(\left ( x;y \right ) = \left ( 2;2 \right )\)
-
C.
\(\left ( x;y \right ) = \left ( 3;3 \right )\)
-
D.
\(\left ( x;y \right ) = \left ( \sqrt 2;\sqrt 2 \right )\)
Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3} + 2{y^2} + x{y^2} = 2 + x - 2{x^2}\\4{y^2} = \left( {\sqrt {{y^2} + 1} + 1} \right)\left( {{y^2} - {x^3} + 3x - 2} \right)\end{array} \right.\)
-
A.
\(\left( {x;y} \right) \in \left\{ {\left( { - 2;0} \right),\left( { - 2; - 2\sqrt 2 } \right),\left( { - 2;2\sqrt 2 } \right),\left( {1;0} \right)} \right\}\)
-
B.
\(\left( {x;y} \right) \in \left\{ {\left( { 2;0} \right),\left( { - 2; -\sqrt 2 } \right),\left( { - 2;\sqrt 2 } \right),\left( {-1;0} \right)} \right\}\)
-
C.
\(\left( {x;y} \right) \in \left\{ {\left( { 2;0} \right),\left( { - 2; - 2\sqrt 2 } \right),\left( { - 2;2\sqrt 2 } \right),\left( {-1;0} \right)} \right\}\)
-
D.
\(\left( {x;y} \right) \in \left\{ {\left( { - 2;0} \right),\left( { - 2; - \sqrt 2 } \right),\left( { - 2;\sqrt 2 } \right),\left( {1;0} \right)} \right\}\)
Lời giải và đáp án
Cho hệ phương trình: \(\left\{ \begin{array}{l}x - 2y = 5\\mx - y = 4\end{array} \right.\) \(\begin{array}{l}\left( 1 \right)\\\left( 2 \right)\end{array}\)
Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) trong đó $x,y$ trái dấu.
-
A.
\(m > \dfrac{4}{5}\)
-
B.
\(m < \dfrac{4}{5}\)
-
C.
\(m > \dfrac{5}{4}\)
-
D.
\(m < \dfrac{5}{4}\)
Đáp án: A
+ Từ phương trình (1) biểu diễn \(x\) theo \(y.\)
+ Thế vào phương trình \(\left( 2 \right)\) để được phương trình bậc nhất ẩn \(y.\)
+ Sử dụng kiến thức \(A.X + B = 0\) có nghiệm duy nhất khi \(A \ne 0.\)
+ Biến đổi theo yêu cầu \(xy < 0\) để tìm ra điều kiện của \(m.\)
Từ phương trình (1) ta có \(x = 2y + 5\). Thay \(x = 2y + 5\) vào phương trình (2) ta được:\(m\left( {2y + 5} \right) - y = 4 \Leftrightarrow \left( {2m - 1} \right).y = 4 - 5m\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất. Điều này tương đương với: \(2m - 1 \ne 0 \Leftrightarrow m \ne \dfrac{1}{2}\).
Từ đó ta được: \(y = \dfrac{{4 - 5m}}{{2m - 1}}\) và \(x = 5 + 2y = \dfrac{3}{{2m - 1}}\). Ta có: \(x.y = \dfrac{{3\left( {4 - 5m} \right)}}{{{{\left( {2m - 1} \right)}^2}}}\). Do đó \(x.y < 0 \Leftrightarrow 4 - 5m < 0 \Leftrightarrow m > \dfrac{4}{5}\) (thỏa mãn điều kiện)
Tìm \(m\) để hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\) thỏa mãn $x = \left| y \right|$.
-
A.
\(m = \dfrac{7}{5}\)
-
B.
\(m = \dfrac{4}{5}\)
-
C.
\(m = \dfrac{5}{7}\)
-
D.
\(m = \dfrac{1}{5}\)
Đáp án: A
+ Từ phương trình (1) biểu diễn \(x\) theo \(y.\)
+ Thế vào phương trình \(\left( 2 \right)\) để được phương trình bậc nhất ẩn \(y.\)
+ Sử dụng kiến thức \(A.X + B = 0\) có nghiệm duy nhất khi \(A \ne 0.\)
+ Biến đổi theo yêu cầu $x = \left| y \right|$ để tìm ra điều kiện của \(m.\)
Từ phương trình (1) ta có \(x = 2y + 5\). Thay \(x = 2y + 5\) vào phương trình (2) ta được:\(m\left( {2y + 5} \right) - y = 4 \Leftrightarrow \left( {2m - 1} \right).y = 4 - 5m\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi (3) có nghiệm duy nhất. Điều này tương đương với: \(2m - 1 \ne 0 \Leftrightarrow m \ne \dfrac{1}{2}\). Từ đó ta được: \(y = \dfrac{{4 - 5m}}{{2m - 1}}\) và \(x = 5 + 2y = \dfrac{3}{{2m - 1}}\).
Ta có: \(x = \left| y \right| \Leftrightarrow \dfrac{3}{{2m - 1}} = \left| {\dfrac{{4 - 5m}}{{2m - 1}}} \right|\) (4)
Từ (4) suy ra \(2m - 1 > 0 \Leftrightarrow m > \dfrac{1}{2}\). Với điều kiện \(m > \dfrac{1}{2}\) ta có:
\(\left( 4 \right) \Leftrightarrow \left| {4 - 5m} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}4 - 5m = 3\\4 - 5m = - 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = \dfrac{1}{5}\left( l \right)\\m = \dfrac{7}{5}\end{array} \right.\).
Vậy \(m = \dfrac{7}{5}\).
Cho hệ phương trình: \(\left\{ \begin{array}{l}x + my = m + 1\\mx + y = 3m - 1\end{array} \right.\) \(\begin{array}{l}\left( 1 \right)\\\left( 2 \right)\end{array}\)
Tìm số nguyên \(m\) sao cho hệ phương trình có nghiệm duy nhất \(\left( {x,y} \right)\) mà $x,y$ đều là số nguyên.
-
A.
\(m \in \left\{ { - 3; - 2} \right\}\)
-
B.
\(m \in \left\{ { - 3; - 2;0;1} \right\}\)
-
C.
\(m \in \left\{ { - 3; - 2;0} \right\}\)
-
D.
\(m = - 3\)
Đáp án: C
+ Từ phương trình (2) biểu diễn \(y\) theo \(x.\)
+ Thế vào phương trình \(\left( 1 \right)\) để được phương trình bậc nhất ẩn \(x.\)
+ Sử dụng kiến thức \(A.X + B = 0\) có nghiệm duy nhất khi \(A \ne 0.\)
+ Biến đổi theo yêu cầu $x;y \in Z$ để tìm ra điều kiện của \(m.\)
Từ phương trình (2) ta có \(y = 3m - 1 - mx\). Thay vào phương trình (1) ta được:\(x + m\left( {3m - 1 - mx} \right) = m + 1 \Leftrightarrow \left( {{m^2} - 1} \right)x = 3{m^2} - 2m - 1\) (3)
Hệ có nghiệm duy nhất khi và chỉ khi phương trình (3) có nghiệm duy nhất , tức là \({m^2} - 1 \ne 0 \Leftrightarrow m \ne \pm 1\).
Khi đó \(\left\{ \begin{array}{l}x = \dfrac{{3{m^2} - 2m - 1}}{{{m^2} - 1}} = \dfrac{{\left( {m - 1} \right)\left( {3m + 1} \right)}}{{\left( {m - 1} \right).\left( {m + 1} \right)}} = \dfrac{{3m + 1}}{{m + 1}}\\y = 3m - 1 - m.\dfrac{{3m + 1}}{{m + 1}} = \dfrac{{m - 1}}{{m + 1}}\end{array} \right.\)
Hay \(\left\{ \begin{array}{l}x = \dfrac{{3m + 1}}{{m + 1}} = 3 - \dfrac{2}{{m + 1}}\\y = \dfrac{{m - 1}}{{m + 1}} = 1 - \dfrac{2}{{m + 1}}\end{array} \right.\)
Vậy \(x,y\) nguyên khi và chỉ khi \(\dfrac{2}{{m + 1}}\) nguyên. Do đó \(m + 1\) chỉ có thể là \( - 2; - 1;1;2\). Vậy \(m \in \left\{ { - 3; - 2;0} \right\}\) (thỏa mãn) hoặc \(m = 1\) (loại).
Trong trường hợp hệ có nghiệm duy nhất \(\left( {x;y} \right)\) thì điểm \(M\left( {x;y} \right)\) luôn chạy trên đường thẳng nào dưới đây?
-
A.
\(y = - x - 2\)
-
B.
\(y = x + 2\)
-
C.
\(y = x - 2\)
-
D.
\(y = 2 - x\)
Đáp án: C
+ Tìm \(m\) để hệ phương trình có nghiệm duy nhất (sử dụng kết quả câu trước )
+ Tìm \(x;y\) theo \(m\) và biến đổi để có hệ thức của \(x;y\) độc lập với \(m.\)
Theo câu trước ta có hệ có nghiệm duy nhất khi và chỉ khi \(m \ne \pm 1\)
Khi đó \(\left\{ \begin{array}{l}x = \dfrac{{3m + 1}}{{m + 1}} = 3 - \dfrac{2}{{m + 1}}\\y = \dfrac{{m - 1}}{{m + 1}} = 1 - \dfrac{2}{{m + 1}}\end{array} \right.\)
Suy ra: $x - y = 3 - \dfrac{2}{{m + 1}} - \left( {1 - \dfrac{2}{{m + 1}}} \right) = 2$
Vậy điểm \(M\left( {x;y} \right)\) luôn chạy trên đường thẳng cố định có phương trình \(y = x - 2\).
Tìm \(m\) để hệ trên có nghiệm duy nhất sao cho \(x.y\) đạt giá trị nhỏ nhất
-
A.
\(m = 1\)
-
B.
\(m = 0\)
-
C.
\(m = 2\)
-
D.
\(m = - 1\)
Đáp án: B
+ Tìm \(m\) để hệ phương trình có nghiệm duy nhất (sử dụng kết quả câu trước )
+ Tìm \(x;y\) theo \(m\) và biến đổi để có \(x.y\) nhỏ nhất.
Theo câu trước ta có hệ có nghiệm duy nhất khi và chỉ khi \(m \ne \pm 1\)
Khi đó \(\left\{ \begin{array}{l}x = \dfrac{{3m + 1}}{{m + 1}} = 3 - \dfrac{2}{{m + 1}}\\y = \dfrac{{m - 1}}{{m + 1}} = 1 - \dfrac{2}{{m + 1}}\end{array} \right.\) suy ra \(y = x - 2.\)
Nên \(xy = x.\left( {x - 2} \right) = {x^2} - 2x + 1 - 1 = {\left( {x - 1} \right)^2} - 1 \ge - 1\)
Dấu bằng xảy ra khi và chỉ khi: \(x = 1 \Leftrightarrow 3 - \dfrac{2}{{m + 1}} = 1 \Leftrightarrow \dfrac{2}{{m + 1}} = 2 \Leftrightarrow m + 1 = 1 \Leftrightarrow m = 0\).
Vậy với \(m = 0\) thì \(x.y\) đạt giá trị nhỏ nhất.
Giải hệ phương trình \(\left\{ \begin{array}{l}{(x + y)^2} + y = 3\\2({x^2} + {y^2} + xy) + x = 5\end{array} \right.\) ta được số nghiệm là
-
A.
\(4\)
-
B.
\(3\)
-
C.
\(2\)
-
D.
\(1\)
Đáp án : A
+ Khai triển hằng đẳng thức rồi dùng phương pháp cộng đại số để biến đổi
Ta có $\left\{ \begin{array}{l}{(x + y)^2} + y = 3\,\\2({x^2} + {y^2} + xy) + x = 5\,\end{array} \right.$\( \Leftrightarrow \left\{ \begin{array}{l}2{x^2} + 4xy + 2{y^2} + 2y = 6\\2{x^2} + 2{y^2} + 2xy + x = 5\end{array} \right.\)
Suy ra \(2xy + 2y - x - 1 = 0\)\( \Leftrightarrow (x + 1)(2y - 1) = 0 \Leftrightarrow x = - 1\) hoặc \(y = \dfrac{1}{2}\)
Với \(x = - 1\), ta được \({y^2} - y - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}y = - 1\\y = 2\end{array} \right.\)
Ta được hai nghiệm \(( - 1; - 1)\)và \(( - 1;2)\)
Với \(y = \dfrac{1}{2}\), ta được \({x^2} + x - \dfrac{9}{4} = 0 \Leftrightarrow x = \dfrac{{ - 1 \pm \sqrt {10} }}{2}\)
Ta được hai nghiệm \(\left( {\dfrac{{ - 1 - \sqrt {10} }}{2};\dfrac{1}{2}} \right)\)và \(\left( {\dfrac{{ - 1 + \sqrt {10} }}{2};\dfrac{1}{2}} \right)\)
Vậy hệ có bốn nghiệm \(( - 1; - 1)\); \(( - 1;2)\); \(\left( {\dfrac{{ - 1 - \sqrt {10} }}{2};\dfrac{1}{2}} \right)\)và \(\left( {\dfrac{{ - 1 + \sqrt {10} }}{2};\dfrac{1}{2}} \right)\).
Giải hệ phương trình \(\left\{ \begin{array}{l}xy - {y^2} = \sqrt {3y - 1} - \sqrt {x + 2y - 1} \,\,\, (1)\\{x^3}y - 4x{y^2} + 7xy - 5x - y + 2 = 0 \,\,\, (2)\end{array} \right.\)
( với \(x \in R,y \in R\)) ta được nghiệm là $(x;y).$ Khi đó $x.y$ bằng
-
A.
\(4\)
-
B.
\(1\)
-
C.
\(2\)
-
D.
\(3\)
Đáp án : B
+ Dùng phương pháp nhân liên hợp để biến đổi.
ĐK: \(\left\{ \begin{array}{l}y \ge \dfrac{1}{3}\\x + 2y \ge 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1-2y\\y \ge \dfrac{1}{3}\end{array} \right.\)
Xét \(\sqrt {3y - 1} + \sqrt {x + 2y - 1} = 0 \Leftrightarrow x = y = \dfrac{1}{3}\)
Thay vào (2) không thỏa mãn.
Xét \(\sqrt {3y - 1} + \sqrt {x + 2y - 1} \ne 0 \Leftrightarrow \left[ \begin{array}{l}x \ne \dfrac{1}{3}\\y \ne \dfrac{1}{3}\end{array} \right.\)
\(\left( 1 \right) \Leftrightarrow y\left( {x - y} \right) = \dfrac{{y - x}}{{\sqrt {3y - 1} + \sqrt {x + 2y - 1} }} \Leftrightarrow \left[ \begin{array}{l}x = y\\y + \dfrac{1}{{\sqrt {3y - 1} + \sqrt {x + 2y - 1} }} = 0\,\,\left( {VN\,{\rm{do }}\,y \ge \dfrac{1}{3}} \right)\end{array} \right.\)
Với $x = y,$ thay vào (2) ta được:
\({x^4} - 4{x^3} + 7{x^2} - 6x + 2 = 0 \Leftrightarrow {\left( {x - 1} \right)^2}\left( {{x^2} - 2x + 2} \right) = 0 \Leftrightarrow x = 1\)
Khi đó: $y = 1$ (TM). Vậy nghiệm của hệ là: $\left( {1;1} \right).$
Nên $x.y=1.$
Hệ phương trình \(\left\{ \begin{array}{l}x + y + 2xy = 2\\{x^3} + {y^3} = 8\end{array} \right.\) có bao nhiêu nghiệm?
-
A.
\(1\)
-
B.
\(0\)
-
C.
\(2\)
-
D.
\(4\)
Đáp án : C
+ Dùng phương pháp giải hệ phương trình đối xứng loại 1
Cách giải: Đặt \(\left\{ \begin{array}{l}S = x + y\\P = x.y\end{array} \right.\) điều kiện \({S^2} \ge 4P\) quy hệ phương trình về 2 ẩn \(S,P\)
Đặt \(\left\{ \begin{array}{l}S = x + y\\P = x.y\end{array} \right.\) điều kiện \({S^2} \ge 4P\) hệ phương trình đã cho trở thành:
\(\left\{ \begin{array}{l}S + 2P = 2\\S\left( {{S^2} - 3P} \right) = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}P = \dfrac{{2 - S}}{2}\\S\left( {{S^2} - \dfrac{{6 - 3S}}{2}} \right) = 8\end{array} \right.\)\( \Rightarrow 2{S^3} + 3{S^2} - 6S - 16 = 0 \Leftrightarrow \left( {S - 2} \right)\left( {2{S^2} + 7S + 8} \right) = 0 \Leftrightarrow S = 2 \Rightarrow P = 0\)
Hay \(\left\{ \begin{array}{l}
x + y = 2\\
x.y = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = 0;y = 2\\
y = 0;x = 2
\end{array} \right.\)
Vậy hệ có hai nghiệm.
Biết rằng hệ phương trình \(\left\{ \begin{array}{l}2\left( {x + y} \right) = 3\left( {\sqrt[3]{{{x^2}y}} + \sqrt[3]{{x{y^2}}}} \right)\\\sqrt[3]{x} + \sqrt[3]{y} = 6\end{array} \right.\) có hai cặp nghiệm \(\left( {{x_1};{y_1}} \right);\left( {{x_2};{y_2}} \right)\) . Tính \({x_1} + {x_2}\) .
-
A.
\(70\)
-
B.
\(80\)
-
C.
\(72\)
-
D.
\(64\)
Đáp án : C
+ Dùng phương pháp giải hệ phương trình đối xứng loại 1
Cách giải: Đặt \(\left\{ \begin{array}{l}S = x + y\\P = x.y\end{array} \right.\) điều kiện \({S^2} \ge 4P\) quy hệ phương trình về 2 ẩn \(S,P\)
Đặt \(a = \sqrt[3]{x},b = \sqrt[3]{y}\) hệ đã cho trở thành: \(\left\{ \begin{array}{l}2\left( {{a^3} + {b^3}} \right) = 3\left( {{a^2}b + {b^2}a} \right)\\a + b = 6\end{array} \right.\).
Đặt \(\left\{ \begin{array}{l}S = a + b\\P = ab\end{array} \right.\) điều kiện \({S^2} \ge 4P\) thì hệ đã cho trở thành.
\(\left\{ \begin{array}{l}2\left( {{S^3} - 3SP} \right) = 3SP\\S = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2\left( {36 - 3P} \right) = 3P\\S = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}S = 6\\P = 8\end{array} \right. (TM).\)
Hay
\(\left\{ \begin{array}{l}
a + b = 6\\
a.b = 8
\end{array} \right. \Rightarrow a\left( {6 - a} \right) = 8 \Leftrightarrow {a^2} - 6a + 8 = 0\)
\(\Rightarrow \left\{ \begin{array}{l}a = 2 \Rightarrow x = 8\\b = 4 \Rightarrow y = 64\end{array} \right. \vee \left\{ \begin{array}{l}a = 4 \Rightarrow x = 64\\b = 2 \Rightarrow y = 8\end{array} \right.\)
Vậy hệ đã cho có hai cặp nghiệm \(\left( {x;y} \right) = \left( {8;64} \right),\left( {64;8} \right)\)
Suy ra ${x_1} + {x_2} = 72.$
Biết rằng hệ phương trình \(\left\{ \begin{array}{l}x + y - \sqrt {xy} = 3\\\sqrt {x + 1} + \sqrt {y + 1} = 4\end{array} \right.\) có nghiệm duy nhất \(\left( {x;y} \right)\) . Tính \(x + 2y\) .
-
A.
\(9\)
-
B.
\(6\)
-
C.
\(12\)
-
D.
\(3\)
Đáp án : A
+ Dùng phương pháp giải hệ phương trình đối xứng loại 1
Cách giải: Đặt \(\left\{ \begin{array}{l}S = x + y\\P = x.y\end{array} \right.\) điều kiện \({S^2} \ge 4P\) quy hệ phương trình về 2 ẩn \(S,P\)
Điều kiện: \(\left\{ \begin{array}{l}xy \ge 0\\x,y \ge - 1\end{array} \right.\) .
Đặt \(\left\{ \begin{array}{l}S = x + y\\P = x.y\end{array} \right.\) điều kiện \({S^2} \ge 4P\) hệ phương trình đã cho trở thành:
\( \left\{ \begin{array}{l}S - \sqrt P = 3\\S + 2 + 2\sqrt {S + P + 1} = 16\end{array} \right.\)
$ \Leftrightarrow \left\{ \begin{array}{l}P = {\left( {S - 3} \right)^2}\,\, (S \ge 3)\\2\sqrt {S + {{\left( {S - 3} \right)}^2} + 1} = 14 - S\end{array} \right.$
$ \Leftrightarrow \left\{ \begin{array}{l}3 \le S \le 14;P = {\left( {S - 3} \right)^2}\\4\left( {{S^2} -5S + 10} \right) = 196 - 28S + {S^2}\end{array} \right. $
$\Leftrightarrow \left\{ \begin{array}{l}3 \le S \le 14;P = \left( {S - 3} \right)^2\\{3S^2} + 8S - 156 = 0\end{array} \right.$
\( \Rightarrow \left\{ \begin{array}{l}S = 6\\P = 9 \end{array} \right.\).
Hay \(\left\{ \begin{array}{l}
x + y = 6\\
x.y = 9
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x + y = 6\\
{x^2} - 6x + 9 = 0
\end{array} \right. \Rightarrow x = y = 3\)
Vậy hệ đã cho có nghiệm \(\left( {x;y} \right) = \left( {3;3} \right)\).
Suy ra \(x + 2y = 9.\)
Biết rằng hệ phương trình \(\left\{ \begin{array}{l}\sqrt {{x^2} + {y^2}} + \sqrt {2xy} = 8\sqrt 2 \\\sqrt x + \sqrt y = 4\end{array} \right.\) có nghiệm duy nhất \(\left( {x;y} \right)\) . Tính \(\dfrac{x}{y}\) .
-
A.
\(3\)
-
B.
\(\dfrac{1}{2}\)
-
C.
\(2\)
-
D.
\(1\)
Đáp án : D
+ Dùng phương pháp cộng đại số và hằng đẳng thức để biến đổi
Điều kiện: \(xy > 0.\)
$\begin{array}{l}
\left\{ \begin{array}{l}
\sqrt {2\left( {{x^2} + {y^2}} \right)} + 2\sqrt {xy} = 16\\
x + y + 2\sqrt {xy} = 16
\end{array} \right.\\
\Leftrightarrow \sqrt {2\left( {{x^2} + {y^2}} \right)} = x + y \\\Leftrightarrow {(x - y)^2} = 0\\ \Leftrightarrow x = y
\end{array}$
Thay $x=y$ vào $x + y + 2\sqrt {xy} = 16$ ta được \(2x + 2\left| x \right| = 16 \Leftrightarrow x + \left| x \right| = 8 \Rightarrow x = 4 \Rightarrow y = x = 4\)
Vậy hệ có một cặp nghiệm duy nhất \(\left( {x;y} \right) = \left( {4;4} \right)\)
Khi đó \(\dfrac{x}{y} = \dfrac{4}{4} = 1.\)
Hệ phương trình \(\left\{ \begin{array}{l}\left( {x + y} \right)\left( {1 + \dfrac{1}{{xy}}} \right) = 5\\\left( {{x^2} + {y^2}} \right)\left( {1 + \dfrac{1}{{{x^2}{y^2}}}} \right) = 9\end{array} \right.\) có số nghiệm là
-
A.
\(3\)
-
B.
\(0\)
-
C.
\(4\)
-
D.
\(1\)
Đáp án : C
+ Biến đổi để sử dụng cách giải hệ đối xứng loại 1.
Điều kiện: \(xy \ne 0\).
Hệ đã cho tương đương:
$\left\{ \begin{array}{l}x + y + \dfrac{1}{x} + \dfrac{1}{y} = 5\\{x^2} + {y^2} + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{y^2}}} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left( {x + \dfrac{1}{x}} \right) + \left( {y + \dfrac{1}{y}} \right) = 5\\{\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {y + \dfrac{1}{y}} \right)^2} = 13\end{array} \right.$.
Đặt $\left\{ \begin{array}{l}\left( {x + \dfrac{1}{x}} \right) + \left( {y + \dfrac{1}{y}} \right) = S\\\left( {x + \dfrac{1}{x}} \right).\left( {y + \dfrac{1}{y}} \right) = P\end{array} \right.$
Hệ trở thành:
\(\left\{ \begin{array}{l}{S^2} - 2P = 13\\S = 5\end{array} \right. \Leftrightarrow S = 5,P = 6\)\( \Leftrightarrow \left[ \begin{array}{l}x + \dfrac{1}{x} = 2;y + \dfrac{1}{y} = 3\\x + \dfrac{1}{x} = 3;y + \dfrac{1}{y} = 2\end{array} \right.\). \( \Leftrightarrow \left[ \begin{array}{l}x = 1;y = \dfrac{{3 \pm \sqrt 5 }}{2}\\x = \dfrac{{3 \pm \sqrt 5 }}{2};y = 1\end{array} \right.\).
Vậy hệ đã cho có bốn nghiệm: \(\left( {x;y} \right) = \left( {1;\dfrac{{3 \pm \sqrt 5 }}{2}} \right),\)\(\left( {x;y} \right)=\left( {\dfrac{{3 \pm \sqrt 5 }}{2};1} \right) \).
Hệ phương trình \(\left\{ \begin{array}{l}{x^3}y\left( {1 + y} \right) + {x^2}{y^2}\left( {2 + y} \right) + x{y^3} - 30 = 0\\{x^2}y + x\left( {1 + y + {y^2}} \right) + y - 11 = 0\end{array} \right.\) có bao nhiêu cặp nghiệm \(\left( {x;y} \right)\) mà \(x < 1\) ?
-
A.
\(3\)
-
B.
\(0\)
-
C.
\(2\)
-
D.
\(1\)
Đáp án : D
+ Biến đổi để sử dụng cách giải hệ đối xứng loại 1.
Hệ tương đương với : \(\left\{ \begin{array}{l}xy\left( {x + y} \right)\left( {x + y + xy} \right) = 30\\xy\left( {x + y} \right) + x + y + xy = 11\end{array} \right.\).
Đặt \(xy\left( {x + y} \right) = a;xy + x + y = b\). Ta thu được hệ:
\(\left\{ \begin{array}{l}ab = 30\\a + b = 11\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = 5;b = 6\\a = 6;b = 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}xy\left( {x + y} \right) = 5\\xy + x + y = 6\end{array} \right.\\\left\{ \begin{array}{l}xy\left( {x + y} \right) = 6\\xy + x + y = 5\end{array} \right.\end{array} \right.\).
TH1: \(\left\{ \begin{array}{l}xy\left( {x + y} \right) = 6\\xy + x + y = 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}xy = 2\\x + y = 3\end{array} \right.\\\left\{ \begin{array}{l}xy = 3\\x + y = 2\end{array} \right.(L)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2;y = 1\\x = 1;y = 2\end{array} \right.\)
TH2: \(\left\{ \begin{array}{l}xy\left( {x + y} \right) = 5\\xy + x + y = 6\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}xy = 5\\x + y = 1\end{array} \right.(L)\\\left\{ \begin{array}{l}xy = 1\\x + y = 5\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{5 - \sqrt {21} }}{2};y = \dfrac{{5 + \sqrt {21} }}{2}\\x = \dfrac{{5 + \sqrt {21} }}{2};y = \dfrac{{5 - \sqrt {21} }}{2}\end{array} \right.\).
Vậy hệ có nghiệm: \(\left( {x;y} \right) = \left( {1;2} \right),\left( {2;1} \right),\left( {\dfrac{{5 \pm \sqrt {21} }}{2};\dfrac{{5 \mp \sqrt {21} }}{2}} \right)\)
Suy ra có một cặp nghiệm thỏa mãn đề bài là \(\left( {\dfrac{{5 - \sqrt {21} }}{2};\dfrac{{5 + \sqrt {21} }}{2}} \right)\) .
Hệ phương trình \(\left\{ \begin{array}{l}{x^2} + \sqrt x = 2y\\{y^2} + \sqrt y = 2x\end{array} \right.\) có bao nhiêu cặp nghiệm \(\left( {x;y} \right) \ne \left( {0;0} \right)\) ?
-
A.
\(3\)
-
B.
\(0\)
-
C.
\(2\)
-
D.
\(1\)
Đáp án : C
+ Biến đổi để sử dụng cách giải hệ đối xứng loại 2.
Điều kiện: \(x,y \ge 0\). Trừ hai phương trình của hệ cho nhau ta thu được:
\( {x^2} + \sqrt x - \left( {{y^2} + \sqrt y } \right) = 2\left( {y - x} \right)\)\( \Leftrightarrow \left( {\sqrt x - \sqrt y } \right)\left[ {\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x + \sqrt y } \right)} \right] = 0\)
Vì \(\left( {\sqrt x + \sqrt y } \right)\left( {x + y} \right) + 1 + 2\left( {\sqrt x + \sqrt y } \right) > 0\)
nên phương trình đã cho tương đương với: \(x = y\).
Thay \(x = y\) vào phương trình \({x^2} + \sqrt x = 2y\) ta được \({x^2} + \sqrt x = 2x\)
\( \Leftrightarrow {x^2} - 2x + \sqrt x = 0 \Leftrightarrow {x^2} - x - x + \sqrt x = 0 \Leftrightarrow x\left( {x - 1} \right) - \sqrt x \left( {\sqrt x - 1} \right) = 0\)
\( \Leftrightarrow x\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right) - \sqrt x \left( {\sqrt x - 1} \right) = 0\)
\( \Leftrightarrow \sqrt x \left( {\sqrt x - 1} \right)\left( {x + \sqrt x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 0\\x = 1 \Rightarrow y = 1\\x + \sqrt x - 1 = 0\,\left( * \right)\end{array} \right.\)
Ta có \({\rm{pt}}\,\,\left( * \right) \Leftrightarrow {\left( {\sqrt x + \dfrac{1}{2}} \right)^2} - \dfrac{5}{4} = 0 \)\(\Leftrightarrow {\left( {\sqrt x + \dfrac{1}{2}} \right)^2} = {\left( {\dfrac{{\sqrt 5 }}{2}} \right)^2}\)
\( \Leftrightarrow \left[ \begin{array}{l}\sqrt x = \dfrac{{\sqrt 5 - 1}}{2}\\\sqrt x = \dfrac{{ - \sqrt 5 - 1}}{2}\left( L \right)\end{array} \right. \)\(\Rightarrow x = \dfrac{{3 - \sqrt 5 }}{2} \Rightarrow y = \dfrac{{3 - \sqrt 5 }}{2}\)
Vậy hệ có 3 cặp nghiệm: $\left( {x;y} \right) \in \left\{ {\left( {0;0} \right),\left( {1;1} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};\dfrac{{3 - \sqrt 5 }}{2}} \right)} \right\}$
Suy ra có hai cặp nghiệm thỏa mãn đề bài.
Hệ phương trình \(\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {{y^2} + 6} \right) = y\left( {{x^2} + 1} \right)\\\left( {y - 1} \right)\left( {{x^2} + 6} \right) = x\left( {{y^2} + 1} \right)\end{array} \right.\) có bao nhiêu cặp nghiệm \(\left( {x;y} \right)\) mà \(x > y\) ?
-
A.
\(1\)
-
B.
\(4\)
-
C.
\(2\)
-
D.
\(3\)
Đáp án : A
+ Khai triển từng phương trình rồi sử dụng cách giải hệ đối xứng loại 2.
Hệ đã cho \( \Leftrightarrow \left\{ \begin{array}{l}x{y^2} + 6x - {y^2} - 6 = y{x^2} + y\\y{x^2} + 6y - {x^2} - 6 = x{y^2} + x\end{array} \right.\)
Trừ vế theo vế hai phương trình của hệ ta được:
\(\begin{array}{l}2xy\left( {y - x} \right) + 7\left( {x - y} \right) + \left( {x - y} \right)\left( {x + y} \right) = 0 \\\Leftrightarrow \left( {x - y} \right)\left( {x + y - 2xy + 7} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = y\\x + y - 2xy + 7 = 0\end{array} \right.\end{array}\)
+ Nếu \(x = y\) thay vào hệ ta có: \({x^2} - 5x + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = y = 2\\x = y = 3\end{array} \right.\)
+ Nếu \(x + y - 2xy + 7 = 0 \)
$\begin{array}{l}
\Leftrightarrow 2x + 2y - 4xy + 14 = 0\\
\Leftrightarrow \left( {2x - 1} \right) + 2y\left( {1 - 2x} \right) = - 15\\
\Leftrightarrow \left( {1 - 2x} \right)\left( {1 - 2y} \right) = 15
\end{array}$
Mặt khác khi cộng hai phương trình của hệ đã cho ta được:
\({x^2} + {y^2} - 5x - 5x + 12 = 0 \)$ \Leftrightarrow 4{x^2} - 20x + 25 + 4{y^2} - 20y + 25 - 2 = 0$
\(\Leftrightarrow {\left( {2x - 5} \right)^2} + {\left( {2y - 5} \right)^2} = 2\).
Đặt \(a = 2x - 5,b = 2y - 5\)
Ta có: \(\left\{ \begin{array}{l}{a^2} + {b^2} = 2\\\left( {a + 4} \right)\left( {b + 4} \right) = 15\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {a + b} \right)^2} - 2ab = 2\\ab + 4\left( {a + b} \right) = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a + b = 0\\ab = - 1\end{array} \right.\\\left\{ \begin{array}{l}a + b = - 8\\ab = 31\end{array} \right.\end{array} \right.\)
Trường hợp 1: \(\left\{ \begin{array}{l}a + b = 0\\ab = - 1\end{array} \right. \Leftrightarrow \left( {x;y} \right) = \left( {3;2} \right),\left( {2;3} \right)\)
Trường hợp 2: \(\left\{ \begin{array}{l}a + b = - 8\\ab = 31\end{array} \right.\) vô nghiệm.
Vậy nghiệm của hệ đã cho là: \(\left( {x;y} \right) \in \left\{ {\left( {2;2} \right),\left( {3;3} \right),\left( {2;3} \right),\left( {3;2} \right)} \right\}\)
Suy ra có \(1\) cặp nghiệm thỏa mãn yêu cầu bài toán là \(\left( {x;y} \right) = \left( {3;2} \right).\)
Cho hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{{xy}} = \dfrac{x}{z} + 1\\\dfrac{1}{{yz}} = \dfrac{y}{x} + 1\\\dfrac{1}{{zx}} = \dfrac{z}{y} + 1\end{array} \right.\). Số nghiệm của hệ phương trình trên là:
-
A.
$1$
-
B.
$3$
-
C.
$2$
-
D.
Vô nghiệm
Đáp án : C
Vì $3$ số có vai trò giống nhau nên ta có thể giả sử \(x \ge y\) sau đó biến đổi để chia từng vế với vế của các phương trình cho nhau, để chứng minh được hệ có nghiệm \(x = y = z\)
Điều kiện \(xyz \ne 0\) . Nhận thấy nếu một trong ba số \(x,y,z\) có một số âm, chẳng hạn \(x < 0\) thì phương trình thứ 3 vô nghiệm. Nếu hai trong số ba số \(x,y,z\) là số âm, chẳng hạn \(x,y < 0\) thì phương trình thứ 2 vô nghiệm. Vậy ba số \(x,y,z\) cùng dấu.
Ta có \(\left\{ \begin{array}{l}\dfrac{1}{{xy}} = \dfrac{x}{z} + 1\\\dfrac{1}{{yz}} = \dfrac{y}{x} + 1\\\dfrac{1}{{zx}} = \dfrac{z}{y} + 1\end{array} \right.\)
$\Leftrightarrow \left\{ \begin{array}{l}
\dfrac{1}{{xyz}} = \dfrac{x}{{{z^2}}} + \dfrac{1}{z}\\
\dfrac{1}{{xyz}} = \dfrac{y}{{{x^2}}} + \dfrac{1}{x}\\
\dfrac{1}{{xyz}} = \dfrac{z}{{{y^2}}} + \dfrac{1}{y}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\dfrac{1}{{xyz}} = \dfrac{{x + z}}{{{z^2}}}\\
\dfrac{1}{{xyz}} = \dfrac{{y + x}}{{{x^2}}}\\
\dfrac{1}{{xyz}} = \dfrac{{z + y}}{{{y^2}}}
\end{array} \right.$
\( \bullet \) Trường hợp 1: \(x,y,z > 0\)
Nếu \(x \ge y\) chia hai vế của phương trình thứ hai cho hai vế của phươngng trình thứ ba của hệ ta được \(\dfrac{{{x^2}}}{{{y^2}}} = \dfrac{{x + y}}{{y + z}}\)\( \Rightarrow x \ge z\)
Với \(x \ge z\) chia hai vế phương trình thứ nhất cho phương trình thứ hai: \(\dfrac{{{z^2}}}{{{x^2}}} = \dfrac{{x + z}}{{y + x}} \Rightarrow z \le y\)
Với \(z \le y\) chia phương trình thứ nhất cho phương trình thứ ba: \(\dfrac{{{z^2}}}{{{y^2}}} = \dfrac{{x + z}}{{y + z}} \Rightarrow x \le y\)
Suy ra \(x = y = z\) thay vào hệ phương trình đã cho ta tìm được $\dfrac{1}{{{x^2}}} = 2 \Rightarrow x = \sqrt 2 \,\,\left( {x > 0} \right)$ suy ra nghiệm \(x = y = z = \dfrac{{\sqrt 2 }}{2}\)
\( \bullet \) Trường hợp 2: \(x,y,z < 0\) ta làm tương tự, tìm được thêm nghiệm \(x = y = z = - \dfrac{{\sqrt 2 }}{2}\)
Vậy hệ phương trình có $2$ nghiệm.
Cho hệ phương trình \(\left\{ \begin{array}{l}{y^3} - {x^3} = 1\\{x^5} - {y^5} + xy = 0\end{array} \right.\) . Khẳng định nào trong các khẳng định sau đúng:
-
A.
Hệ phương trình đã cho có nghiệm \(x > 0\)
-
B.
Hệ phương trình đã cho có nghiệm \(y > 0\)
-
C.
Hệ phương trình đã cho vô nghiệm
-
D.
Hệ phương trình đã cho có nghiệm \(x = y\)
Đáp án : C
Sử dụng dữ kiện ở phương trình trên thay vào phương trình dưới để biến đổi thành phương trình tích có nhân tử chung là \((y - x)\)
Xét phương trình \({x^5} - {y^5} + xy = 0 \Leftrightarrow {x^5} - {y^5} + xy({y^3} - {x^3}) = 0 \Leftrightarrow (x - y)({x^4} + {y^4}) = 0\)
$ \Leftrightarrow \left[ \begin{array}{l}x - y = 0\\{x^4} + {y^4} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = y\\x = y = 0\end{array} \right. \Leftrightarrow x = y $
Thử lại \(x = y\) không thỏa mãn phương trình đầu của hệ.
Vậy hệ vô nghiệm.
Cho \((x;y;z)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}{x^3} + 3{x^2} + 2x - 5 = y\\{y^3} + 3{y^2} + 2y - 5 = z\\{z^3} + 3{z^2} + 2z - 5 = x\end{array} \right.\)
Khẳng định nào trong các khẳng định sau là sai:
-
A.
\(x + y + z\) là số nguyên
-
B.
\(x + y + z > 1\)
-
C.
\(x + y + z < 6\)
-
D.
Không tồn tại giá trị \(x + y + z\)
Đáp án : D
Cộng 3 vế của từng phương trình lại với nhau, sau đó phân tích về cùng 1 dạng để đánh giá
Cộng vế với vế của từng phương trình với nhau ta được:
\(\begin{array}{l}\,\,\,\,\,\,\,\,({x^3} + 3{x^2} + x - 5) + ({y^3} + 3{y^2} + y - 5) + ({z^3} + 3{z^2} + z - 5) = 0\\ \Leftrightarrow (x - 1)({x^2} + 4x + 5) + (y - 1)({y^2} + 4y + 5) + (z - 1)({z^2} + 4z + 5) = 0\,\,\,\,\,\,\,\left( 1 \right)\end{array}\)
Nếu \(x > 1 \Rightarrow {z^3} + 3{z^2} + 2z - 5 > 1 \Leftrightarrow (z - 1)({z^2} + 4x + 6) > 0 \Rightarrow z > 1\)
Tương tự với \(z > 1 \Rightarrow y > 1\)
Suy ra \(VT(1) > 0\) (phương trình vô nghiệm)
Chứng minh tương tự với \(x < 1\) ta cũng được phương trình (1) vô nghiệm
Suy ra phương trình (1) có nghiệm duy nhất \(x = y = z = 1\)
Cho \((x;y;z)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}36{x^2}y - 60{x^2} + 25y = 0\\36{y^2}z - 60{y^2} + 25z = 0\\36{z^2}x - 60{z^2} + 25x = 0\end{array} \right.\)
Giá trị nhỏ nhất của \(A = x + y + z\) là:
-
A.
\(A = 0\)
-
B.
\(A = \dfrac{5}{2}\)
-
C.
\(A = 1\)
-
D.
\(A = - 2\)
Đáp án : A
Rút $y$ theo $x$ từ phương trình (1), rút $z$ theo $y$ từ phương trình (2) và rút $x$ theo $z$ từ phương trình (3) sau đó dùng bất đẳng thức Cô-si để đánh giá tìm ra \(x = y = z\)
\(\left\{ \begin{array}{l}36{x^2}y - 60{x^2} + 25y = 0\\36{y^2}z - 60{y^2} + 25z = 0\\36{z^2}x - 60{z^2} + 25x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{60{x^2}}}{{36{x^2} + 25}}\\z = \dfrac{{60{y^2}}}{{36{y^2} + 25}}\\x = \dfrac{{60{z^2}}}{{36{z^2} + 25}}\end{array} \right. \Rightarrow x,y,z \ge 0\)
Nhận thấy \(x = y = z = 0\) là 1 nghiệm của hệ phương trình
Xét \(x > 0;y > 0;z > 0\) áp dụng bất đẳng thức Cosi cho 2 số không âm, ta có:
\(36{x^2} + 25 \ge 2\sqrt {36{x^2}.25} = 60\left| x \right| \ge 60x \Rightarrow y \le x\)
Chứng minh tương tự, ta được \(z \le y;x \le z \Rightarrow x \le z \le y \le x \Rightarrow x = y = z\)
Thay vào phương trình (1) ta được \(36{x^3} - 60{x^2} + 25x = 0 \Leftrightarrow x = \dfrac{5}{6}\) hay \(x = y = z = \dfrac{5}{6}\)
Suy ra giá trị nhỏ nhất của \(A = x + y + z = 0\) (khi \(x = y = z = 0\) )
Cho hệ phương trình $\left\{ \begin{array}{l}{\rm{ - ax}} + y = 3\\\left| {x + 1} \right| + y = 2\end{array} \right.$. Giá trị của a để hệ phương trình có nghiệm duy nhất là:
-
A.
\( - 2 \le a \le 1\)
-
B.
\(\left[ \begin{array}{l}a > 1\\a < - 1\end{array} \right.\)
-
C.
\( - 2 < a < 1\)
-
D.
\(\left[ \begin{array}{l}a \ge 1\\a < - 2\end{array} \right.\)
Đáp án : B
+ Xét hai trường hợp \(x \ge - 1\) và \(x < - 1\)
+ Tìm điều kiện để hệ có nghiệm duy nhất trong từng trường hợp và chú ý đến điều kiện của \(x.\)
Ta có: $\left\{ \begin{array}{l} - ax + y = 3\\\left| {x + 1} \right| + y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = ax + 3\\\left| {x + 1} \right| + ax + 3 = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = ax + 3\\\left| {x + 1} \right| + ax + 1 = 0\end{array} \right.$
Nếu \(x \ge - 1\) ta có \(x + 1 + ax + 1 = 0 \Rightarrow x(a + 1) = - 2\) \((1)\)
Phương trình \((1)\) có nghiệm duy nhất \( \Leftrightarrow a \ne - 1 \Rightarrow x = \dfrac{{ - 2}}{{a + 1}} \Rightarrow y = \dfrac{{a + 3}}{{a + 1}}\)
Do \(x \ge - 1 \Leftrightarrow \dfrac{{ - 2}}{{a + 1}} \ge - 1 \Leftrightarrow \dfrac{{ - 2}}{{a + 1}} + 1 \ge 0 \Leftrightarrow \dfrac{{a - 1}}{{a + 1}} \ge 0 \Leftrightarrow \left\{ \begin{array}{l}(a - 1)(a + 1) \ge 0\\a \ne - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a \ge 1\\a < - 1\end{array} \right.\)
Nếu \(x < - 1\) ta có \( - x - 1 + ax + 1 = 0 \Rightarrow (a - 1)x = 0\) \((2)\)
Nếu \(a = 1\) thì (2) là \(0x = 0\) đúng với mọi \(x < - 1\) nên (2) có vô số nghiệm hay hệ đã cho có vô số nghiệm. (loại)
Nếu \(a \ne 1\) thì (2) có nghiệm duy nhất \(x = 0\) (loại do \(x < - 1\)). Do đó \((2)\) vô nghiệm khi \(a \ne 1\).
Để hệ phương trình đã cho có nghiệm duy nhất thì có 2 trường hợp:
Trường hợp 1: Phương trình \((1)\) vô nghiệm và phương trình \((2)\) có nghiệm duy nhất.
Trường hợp này không xảy ra vì \((2)\) chỉ có thể vô nghiệm hoặc vô số nghiệm.
Trường hợp 2: Phương trình \((1)\) có nghiệm duy nhất và phương trình \((2)\) vô nghiệm \( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}a \ge 1\\a < - 1\end{array} \right.\\a \ne 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a > 1\\a < - 1\end{array} \right.\)
Giải hệ phương trình: \(\left\{ \begin{array}{l}\sqrt {2x + 3} + \sqrt {4 - y} = 4{\rm{ }}\left( 1 \right)\\\sqrt {2y + 3} + \sqrt {4 - x} = 4{\rm{ }}\left( 2 \right)\end{array} \right.\)
-
A.
\(S = \left( {x;y} \right) = \left\{ {\left( { - 3; - 3} \right),\left( {\dfrac{{11}}{9};\dfrac{{11}}{9}} \right)} \right\}\)
-
B.
\(S = \left( {x;y} \right) = \left\{ {\left( {3;3} \right),\left( { - \dfrac{{11}}{9}; - \dfrac{{11}}{9}} \right)} \right\}\)
-
C.
\(S = \left( {x;y} \right) = \left\{ {\left( {3;3} \right),\left( {\dfrac{{11}}{9};\dfrac{{11}}{9}} \right)} \right\}\)
-
D.
\(S = \left( {x;y} \right) = \left\{ {\left( { - 3; - 3} \right),\left( { - \dfrac{{11}}{9}; - \dfrac{{11}}{9}} \right)} \right\}\)
Đáp án : C
Thay đổi vị trí x và y cho nhau thì phương trình \(\left( 1 \right)\) trở thành phương trình \(\left( 2 \right)\) và hệ không thay đổi \( \Rightarrow \) hệ đối xứng loại II. \( \to \) Phương pháp: Lấy vế trừ theo vế. Nên ta có lời giải sau:
Điều kiện: \(\left\{ \begin{array}{l} - \dfrac{3}{2} \le x \le 4\\ - \dfrac{3}{2} \le x \le 4\end{array} \right.\)
\(\begin{array}{l}\left( 1 \right) - \left( 2 \right) \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3} + \sqrt {4 - y} = 4\\\left( {\sqrt {2x + 3} - \sqrt {2y + 3} } \right) + \left( {\sqrt {4 - y} - \sqrt {4 - x} } \right) = 0\end{array} \right.\\{\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3} + \sqrt {4 - y} = 4\\\dfrac{{2\left( {x - y} \right)}}{{\sqrt {2x + 3} + \sqrt {2y + 3} }} + \dfrac{{x - y}}{{\sqrt {4 - x} + \sqrt {4 - y} }} = 0\end{array} \right.\\{\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3} + \sqrt {4 - y} = 4\\\left( {x - y} \right)\left( {\dfrac{2}{{\sqrt {2x + 3} + \sqrt {2y + 3} }} + \dfrac{1}{{\sqrt {4 - x} + \sqrt {4 - y} }}} \right) = 0\end{array} \right.\\{\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3} + \sqrt {4 - y} = 4\\x - y = 0\end{array} \right.{\rm{ }}\left( {do:\dfrac{2}{{\sqrt {2x + 3} + \sqrt {2y + 3} }} + \dfrac{1}{{\sqrt {4 - x} + \sqrt {4 - y} }} > 0} \right)\\{\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}\sqrt {2x + 3} + \sqrt {4 - x} = 4\\x = y\end{array} \right.\\{\rm{ }} \Leftrightarrow \left\{ \begin{array}{l}x + 7 + 2\sqrt {\left( {2x + 3} \right)\left( {4 - x} \right)} = 16\\x = y\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = y = 3\\x = y = \dfrac{{11}}{9}\end{array} \right.\end{array}\)
So với điều kiện, hệ có hai nghiệm: \(S = \left( {x;y} \right) = \left\{ {\left( {3;3} \right),\left( {\dfrac{{11}}{9};\dfrac{{11}}{9}} \right)} \right\}\).
Giải hệ phương trình : \(\left\{ \begin{array}{l}\left( {x + y} \right)\left( {1 + \dfrac{1}{{xy}}} \right) = 5\\\left( {{x^2} + {y^2}} \right)\left( {1 + \dfrac{1}{{{x^2}{y^2}}}} \right) = 9\end{array} \right.\)
-
A.
\(\left( {x;\,y} \right) = \left\{ {\left( {1;\dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1;\dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2}; - 1} \right),\left( {\dfrac{{3 + \sqrt 5 }}{2}; - 1} \right)} \right\}\)
-
B.
\(\left( {x;\,y} \right) = \left\{ {\left( {1; - \dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1; - \dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};1} \right),\left( {\dfrac{{3 + \sqrt 5 }}{2};1} \right)} \right\}\)
-
C.
\(\left( {x;\,y} \right) = \left\{ {\left( { - 1; - \dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1;\dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};1} \right),\left( { - \dfrac{{3 + \sqrt 5 }}{2}; - 1} \right)} \right\}\)
-
D.
\(\left( {x;\,y} \right) = \left\{ {\left( {1;\dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1;\dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};1} \right),\left( {\dfrac{{3 + \sqrt 5 }}{2};1} \right)} \right\}\)
Đáp án : D
Nhận khai triển hệ phương trình ban đầu sau đó đặt \(x + \dfrac{1}{x} = a;y + \dfrac{1}{y} = b\) đưa về hệ đối xứng loại 1
\(\left\{ \begin{array}{l}\left( {x + y} \right)\left( {1 + \dfrac{1}{{xy}}} \right) = 5\\\left( {{x^2} + {y^2}} \right)\left( {1 + \dfrac{1}{{{x^2}{y^2}}}} \right) = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \dfrac{1}{x} + y + \dfrac{1}{y} = 5\\{x^2} + \dfrac{1}{{{x^2}}} + {y^2} + \dfrac{1}{{{y^2}}} = 9\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \dfrac{1}{x} + y + \dfrac{1}{y} = 5\\{\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {y + \dfrac{1}{y}} \right)^2} = 13\end{array} \right.\)
Đặt \(x + \dfrac{1}{x} = a;y + \dfrac{1}{y} = b\) ta có:
\(\left\{ \begin{array}{l}a + b = 5\\{a^2} + {b^2} = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 5 - b\\{(5 - b)^2} + {b^2} = 13\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a + b = 5\\(b - 2)(b - 3) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\\\left\{ \begin{array}{l}a = 3\\b = 2\end{array} \right.\end{array} \right.\)
Giải \(\left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \dfrac{1}{x} = 2\\y + \dfrac{1}{y} = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = \dfrac{{3 \pm \sqrt 5 }}{2}\end{array} \right.\)
Giải \(\left\{ \begin{array}{l}a = 3\\b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + \dfrac{1}{x} = 3\\y + \dfrac{1}{y} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = \dfrac{{3 \pm \sqrt 5 }}{2}\end{array} \right.\)
Vậy hệ đã cho có nghiệm\(\left( {x;y} \right)\) là : \(\left( {1;\dfrac{{3 - \sqrt 5 }}{2}} \right),\left( {1;\dfrac{{3 + \sqrt 5 }}{2}} \right),\left( {\dfrac{{3 - \sqrt 5 }}{2};1} \right),\left( {\dfrac{{3 + \sqrt 5 }}{2};1} \right)\)
Giải hệ phương trình \(\left\{ \begin{array}{l}{x^2} = 2x - y\\{y^2} = 2y - z\\{z^2} = 2z - t\\{t^2} = 2t - x\end{array} \right.\)
-
A.
\(\left( {x;\,y;\,z;\,t} \right) = \left\{ {\left( {0;0;0;0} \right);\left( { - 1; - 1; - 1; - 1} \right)} \right\}\)
-
B.
\(\left( {x;\,y;\,z;\,t} \right) = \left\{ {\left( {0;0;0;0} \right);\left( {2;2;2;2} \right)} \right\}\)
-
C.
\(\left( {x;\,y;\,z;\,t} \right) = \left\{ {\left( {1;1;1;1} \right);\left( {2;2;2;2} \right)} \right\}\)
-
D.
\(\left( {x;\,y;\,z;\,t} \right) = \left\{ {\left( {0;0;0;0} \right);\left( {1;1;1;1} \right)} \right\}\)
Đáp án : D
+) Biến đổi hệ phương trình ban đầu bằng cách đặt \(1 - x = a\) tương tự với y, z, t.
+) Đưa về hệ mới.
+) Sử dụng bất đẳng thức để tìm nghiệm tại dấu “=”
\(\left\{ \begin{array}{l}{x^2} = 2x - y\\{y^2} = 2y - z\\{z^2} = 2z - t\\{t^2} = 2t - x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {1 - x} \right)^2} = 1 - y \ge 0\\{\left( {1 - y} \right)^2} = 1 - z \ge 0\\{\left( {1 - z} \right)^2} = 1 - t \ge 0\\{\left( {1 - t} \right)^2} = 1 - x \ge 0\end{array} \right.\)
Đặt \(\left\{ \begin{array}{l}b = 1 - y \ge 0\\c = 1 - z \ge 0\\d = 1 - t \ge 0\\a = 1 - x \ge 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{a^2} = b\\{b^2} = c\\{c^2} = d\\{d^2} = a\end{array} \right.\)
+) Xét \(a = 0 \Rightarrow b = c = d = 0 \Rightarrow x = y = z = t = 1\)
+) Xét \(a \ne 0 \Rightarrow b;c;d \ne 0\).
Ta có \(\left\{ \begin{array}{l}{a^2} = b\\{b^2} = c\\{c^2} = d\\{d^2} = a\end{array} \right.\) nhân theo vế ta có \({\left( {abcd} \right)^2} - abcd = 0 \Leftrightarrow abcd = 1\)( vì \(abcd \ne 0\))
Mặt khác \(\left\{ \begin{array}{l}{a^2} = b \ge 0\\{b^2} = c \ge 0\\{c^2} = d \ge 0\\{d^2} = a \ge 0\end{array} \right. \Rightarrow {a^2} + {b^2} + {c^2} + {d^2} = a + b + c + d\)
\(\begin{array}{l} \Leftrightarrow 2{a^2} + 2{b^2} + 2{c^2} + 2{d^2} - 2a + 2b + 2c + 2d = 0\\ \Leftrightarrow {\left( {a - 1} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 1} \right)^2} + {\left( {d - 1} \right)^2} + {a^2} + {b^2} + {c^2} + {d^2} - 4 = 0\end{array}\)
Ta có \({a^2} + {b^2} + {c^2} + {d^2} \ge 4\sqrt[4]{{{a^2}{b^2}{c^2}{d^2}}} = 4\)
\( \Rightarrow {\left( {a - 1} \right)^2} + {\left( {b - 1} \right)^2} + {\left( {c - 1} \right)^2} + {\left( {d - 1} \right)^2} + {a^2} + {b^2} + {c^2} + {d^2} - 4 \ge 0\).
Dấu “=” xảy ra \( \Leftrightarrow a = b = c = d = 1 \Rightarrow x = y = z = t = 0\).
Vậy hệ phương trình có nghiệm \(\left( {x;y;z;t} \right)\)là \(\left( {0;0;0;0} \right);\left( {1;1;1;1} \right)\).
Tìm các số thực \(x\) và \(y\) thỏa mãn \(\left\{ \begin{array}{l}{x^3} = {y^2} + 18\\{y^3} = {x^2} + 18\end{array} \right.\).
-
A.
\(\left ( x;y \right ) = \left ( 1;1 \right )\)
-
B.
\(\left ( x;y \right ) = \left ( 2;2 \right )\)
-
C.
\(\left ( x;y \right ) = \left ( 3;3 \right )\)
-
D.
\(\left ( x;y \right ) = \left ( \sqrt 2;\sqrt 2 \right )\)
Đáp án : C
Trừ vế với vế để xuất hiện nhân tử chung.
Xét hệ phương trình \(\left\{ \begin{array}{l}{x^3} = {y^2} + 18\,\,\,\left( 1 \right)\\{y^3} = {x^2} + 18\,\,\,\left( 2 \right)\end{array} \right.\).
Trừ vế theo vế của phương trình (1) và (2) ta có:
\(\begin{array}{l}\,\,\,\,\,\,\,{x^3} - {y^3} = {y^2} - {x^2}\\ \Leftrightarrow \left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right) = - \left( {x - y} \right)\left( {x + y} \right)\\ \Leftrightarrow \left( {x - y} \right)\left( {{x^2} + xy + {y^2} + x + y} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - y = 0\\{x^2} + xy + {y^2} + x + y = 0\end{array} \right.\end{array}\)
TH1: \(x - y = 0 \Leftrightarrow x = y\).
Thay vào phương trình (1) ta có:
\(\begin{array}{l}\,\,\,\,\,\,{x^3} = {x^2} + 18 \Leftrightarrow {x^3} - {x^2} - 18 = 0\\ \Leftrightarrow {x^3} - 27 - {x^2} + 9 = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - \left( {x - 3} \right)\left( {x + 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - x - 3} \right) = 0\\ \Leftrightarrow \left( {x - 3} \right)\left( {{x^2} + 2x + 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 3 = 0 \Leftrightarrow x = 3\\{x^2} + 2x + 6 = 0\end{array} \right.\end{array}\)
Xét phương trình \({x^2} + 2x + 6 = 0 \Leftrightarrow {\left( {x + 1} \right)^2} + 5 = 0\) (vô nghiệm do \({\left( {x + 1} \right)^2} + 5 \ge 5 > 0\,\,\,\forall x\))
Với \(x = 3 \Rightarrow y = 3\) \( \Rightarrow \) Hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( {3;3} \right)\).
TH2: \({x^2} + xy + {y^2} + x + y = 0\).
Vì \(\left\{ \begin{array}{l}{x^3} = {y^2} + 18 \ge 18 \Rightarrow x \ge \sqrt[3]{{18}} > 0\\{y^3} = {x^2} + 18 \ge 18 \Rightarrow y \ge \sqrt[3]{{18}} > 0\end{array} \right. \Rightarrow x + y > 0\)
Lại có \({x^2} + xy + {y^2} = {x^2} + 2x.\dfrac{1}{2}y + \dfrac{1}{4}{y^2} + \dfrac{3}{4}{y^2} = {\left( {x + \dfrac{1}{2}y} \right)^2} + \dfrac{3}{4}{y^2} \ge 0\,\,\forall x,\,\,y\).
Do đó \({x^2} + xy + {y^2} + x + y > 0\,\,\forall x,y\), do đó phương trình \({x^2} + xy + {y^2} + x + y = 0\) vô nghiệm.
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {3;3} \right)\).
Giải hệ phương trình: \(\left\{ \begin{array}{l}{x^3} + 2{y^2} + x{y^2} = 2 + x - 2{x^2}\\4{y^2} = \left( {\sqrt {{y^2} + 1} + 1} \right)\left( {{y^2} - {x^3} + 3x - 2} \right)\end{array} \right.\)
-
A.
\(\left( {x;y} \right) \in \left\{ {\left( { - 2;0} \right),\left( { - 2; - 2\sqrt 2 } \right),\left( { - 2;2\sqrt 2 } \right),\left( {1;0} \right)} \right\}\)
-
B.
\(\left( {x;y} \right) \in \left\{ {\left( { 2;0} \right),\left( { - 2; -\sqrt 2 } \right),\left( { - 2;\sqrt 2 } \right),\left( {-1;0} \right)} \right\}\)
-
C.
\(\left( {x;y} \right) \in \left\{ {\left( { 2;0} \right),\left( { - 2; - 2\sqrt 2 } \right),\left( { - 2;2\sqrt 2 } \right),\left( {-1;0} \right)} \right\}\)
-
D.
\(\left( {x;y} \right) \in \left\{ {\left( { - 2;0} \right),\left( { - 2; - \sqrt 2 } \right),\left( { - 2;\sqrt 2 } \right),\left( {1;0} \right)} \right\}\)
Đáp án : A
Biến đổi phương trình đầu thành phương trình tích. Từ đó đưa về giải hai hệ phương trình.
Đặt \(\left\{ \begin{array}{l}{x^3} + 2{y^2} + x{y^2} = 2 + x - 2{x^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\4{y^2} = \left( {\sqrt {{y^2} + 1} + 1} \right)\left( {{y^2} - {x^3} + 3x - 2} \right)\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
\(\begin{array}{l}\left( 1 \right) \Leftrightarrow \left( {{x^3} + 2{x^2} - x - 2} \right) + \left( {2{y^2} + x{y^2}} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 1} \right) + {y^2}\left( {x + 2} \right) = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} - 1 + {y^2}} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\{x^2} - 1 + {y^2} = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - 2\\{y^2} = 1 - {x^2}\end{array} \right.\end{array}\)
TH1: \(x = - 2\) thay vào \(\left( 2 \right)\) được:
\(\begin{array}{l}4{y^2} = \left( {\sqrt {{y^2} + 1} + 1} \right)\left( {{y^2} + 8 - 6 - 2} \right) \Leftrightarrow 4{y^2} = \left( {\sqrt {{y^2} + 1} + 1} \right).{y^2}\\ \Leftrightarrow {y^2}\left( {\sqrt {{y^2} + 1} + 1 - 4} \right) = 0 \Leftrightarrow {y^2}\left( {\sqrt {{y^2} + 1} - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{y^2} = 0\\\sqrt {{y^2} + 1} - 3 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = 0\\{y^2} + 1 = 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = 0\\{y^2} = 8\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = 0\\y = \pm 2\sqrt 2 \end{array} \right.\end{array}\)
TH2: \({y^2} = 1 - {x^2}\) thay vào (2) được:
\(\begin{array}{l}4\left( {1 - {x^2}} \right) = \left( {\sqrt {2 - {x^2}} + 1} \right)\left( {1 - {x^2} - {x^3} + 3x - 2} \right)\\ \Leftrightarrow 4\left( {1 - {x^2}} \right) = \left( {\sqrt {2 - {x^2}} + 1} \right)\left( { - {x^3} - {x^2} + 3x - 1} \right)\\ \Leftrightarrow 4\left( {{x^2} - 1} \right) = \left( {\sqrt {2 - {x^2}} + 1} \right)\left( {{x^3} + {x^2} - 3x + 1} \right)\\ \Leftrightarrow 4\left( {{x^2} - 1} \right) = \left( {\sqrt {2 - {x^2}} + 1} \right)\left( {x - 1} \right)\left( {{x^2} + 2x - 1} \right)\\ \Leftrightarrow 4\left( {x - 1} \right)\left( {x + 1} \right) = \left( {\sqrt {2 - {x^2}} + 1} \right)\left( {x - 1} \right)\left( {{x^2} + 2x - 1} \right)\\ \Leftrightarrow \left( {x - 1} \right)\left[ {4x + 4 - \left( {\sqrt {2 - {x^2}} + 1} \right)\left( {{x^2} + 2x - 1} \right)} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\4x + 4 - \left( {\sqrt {2 - {x^2}} + 1} \right)\left( {{x^2} + 2x - 1} \right) = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\4x + 4 = \left( {\sqrt {2 - {x^2}} + 1} \right)\left( {{x^2} + 2x - 1} \right)\end{array} \right.\end{array}\)
Với \(x = 1\) thì \({y^2} = 1 - 1 = 0 \Leftrightarrow y = 0\).
Với \(4x + 4 = \left( {\sqrt {2 - {x^2}} + 1} \right)\left( {{x^2} + 2x - 1} \right)\) ta có:
\(\begin{array}{l}4x + 4 = \left( {\sqrt {2 - {x^2}} + 1} \right)\left( {{x^2} + 2x - 1} \right)\\ \Leftrightarrow 4x + 4 = \sqrt {2 - {x^2}} \left( {{x^2} + 2x - 1} \right) + {x^2} + 2x - 1\\ \Leftrightarrow \sqrt {2 - {x^2}} \left( {{x^2} + 2x - 1} \right) = - {x^2} + 2x + 5\\ \Leftrightarrow \sqrt {2 - {x^2}} = \dfrac{{ - {x^2} + 2x + 5}}{{{x^2} + 2x - 1}}\\ \Leftrightarrow \sqrt {2 - {x^2}} = \dfrac{{6 - {{\left( {x - 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2} - 2}}\,\,\,\,\,\left( * \right)\end{array}\)
(Do \({x^2} + 2x - 1 = 0 \Leftrightarrow x = - 1 \pm \sqrt 2 \) không thỏa mãn phương trình)
Vì \({x^2} + {y^2} = 1\) nên \({x^2} \le 1 \Rightarrow - 1 \le x \le 1\)
\( \Rightarrow 1 \le \sqrt {2 - {x^2}} \le \sqrt 2 \) hay \(1 \le VT\left( * \right) \le \sqrt 2 \)
Lại có,
Với \(x \le 1\) thì \(\dfrac{{6 - {{\left( {x - 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2} - 2}} \ge \dfrac{{6 - {{\left( {1 - 1} \right)}^2}}}{{{{\left( {1 + 1} \right)}^2} - 2}} = 3 \Rightarrow VP\left( * \right) \ge 3\)
Với \(x \ge - 1\) thì \(\dfrac{{6 - {{\left( {x - 1} \right)}^2}}}{{{{\left( {x + 1} \right)}^2} - 2}} \le \dfrac{{6 - {{\left( { - 1 - 1} \right)}^2}}}{{{{\left( { - 1 + 1} \right)}^2} - 2}} = - 1 \Rightarrow VP\left( * \right) \le - 1\)
Do đó với \( - 1 \le x \le 1\) thì \(VP\left( * \right) \ge 3\) hoặc .
\( \Rightarrow \) (*) vô nghiệm do \(1 \le VT\left( * \right) \le \sqrt 2 \) và \(VP\left( * \right) \ge 3\) hoặc \(VP\left( * \right) \le - 1\).
Vậy hệ đã cho có nghiệm \(\left( {x;y} \right) \in \left\{ {\left( { - 2;0} \right),\left( { - 2; - 2\sqrt 2 } \right),\left( { - 2;2\sqrt 2 } \right),\left( {1;0} \right)} \right\}\).
Luyện tập và củng cố kiến thức Bài tập ôn tập chương 3 Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5, 6: Giải bài toán bằng cách lập hệ phương trình Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Hệ phương trình bậc nhất hai ẩn chứa tham số Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Giải hệ phương trình bằng phương pháp thế Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Hệ hai phương trình bậc nhất hai ẩn Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Phương trình bậc nhất hai ẩn Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập ôn tập chương 8 Toán 9
- Trắc nghiệm Bài 3: Hình cầu. Diện tích mặt cầu và thể tích hình cầu Toán 9
- Trắc nghiệm Bài 2: Hình nón. Hình nón cụt. Diện tích xung quanh và thể tích hình nón Toán 9
- Trắc nghiệm Bài 1: Hình trụ. Diện tích xung quanh và thể tích hình trụ Toán 9
- Trắc nghiệm Bài tập ôn tập chương 7 Toán 9