Trắc nghiệm Bài 7,8 Vị trí tương đối của hai đường tròn Toán 9
Đề bài
Nếu hai đường tròn tiếp xúc với nhau thì số điểm chung của hai đường tròn là
-
A.
$1$
-
B.
$2$
-
C.
$3$
-
D.
$4$
Cho hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$ với $R > r$ cắt nhau tại hai điểm phân biệt và $OO' = d$. Chọn khẳng định đúng?
-
A.
$d = R-r$
-
B.
$d > R + r$
-
C.
$R-r < d < R + r$
-
D.
$d < R - r$
Cho hai đường tròn $\left( {O;8\,cm} \right)$ và $\left( {O';6cm} \right)$ cắt nhau tại $A,B$ sao cho $OA$ là tiếp tuyến của $\left( {O'} \right)$. Độ dài dây $AB$ là
-
A.
$AB = 8,6\,cm$
-
B.
$AB = 6,9\,cm$
-
C.
$AB = 4,8\,cm$
-
D.
$AB = 9,6\,cm$
Cho hai đường tròn \(\left( {I;7cm} \right)\) và \(\left( {K;5cm} \right)\). Biết \(IK = 2cm\). Quan hệ giữa hai đường tròn là:
-
A.
Tiếp xúc trong
-
B.
Tiếp xúc ngoài
-
C.
Cắt nhau
-
D.
Đựng nhau
Cho đường tròn $\left( O \right)$ bán kính $OA$ và đường tròn $\left( {O'} \right)$ đường kính $OA$.
Vị trí tương đối của hai đường tròn là
-
A.
Nằm ngoài nhau
-
B.
Cắt nhau
-
C.
Tiếp xúc ngoài
-
D.
Tiếp xúc trong
Dây $AD$ của đường tròn lớn cắt đường tròn nhỏ tại $C$. Khi đó
-
A.
$AC > CD$
-
B.
$AC = CD$
-
C.
$AC < CD$
-
D.
$CD = OD$
Cho hai đường tròn $\left( {{O_1}} \right)$ và $\left( {{O_2}} \right)$ tiếp xúc ngoài tại $A$ và một đường thẳng $d$ tiếp xúc với $\left( {{O_1}} \right);\left( {{O_2}} \right)$ lần lượt tại $B,C$.
Tam giác $ABC$ là
-
A.
Tam giác cân
-
B.
Tam giác đều
-
C.
Tam giác vuông
-
D.
Tam giác vuông cân
Lấy $M$ là trung điểm của $BC$. Chọn khẳng định sai?
-
A.
$AM$ là tiếp tuyến chung của hai đường tròn $\left( {{O_1}} \right);\left( {{O_2}} \right)$
-
B.
$AM$ là đường trung bình của hình thang ${O_1}BC{O_2}$
-
C.
$AM = MC$
-
D.
$AM = \dfrac{1}{2}BC$
Cho hai đường tròn $\left( {O;20cm} \right)$ và $\left( {O';15cm} \right)$ cắt nhau tại $A$ và$B$. Tính đoạn nối tâm $OO'$, biết rằng$AB = 24cm$ và $O$ và $O'$ nằm cùng phía đối với $AB$ .
-
A.
$OO' = 7cm$
-
B.
$OO' = 8cm$
-
C.
$OO' = 9cm$
-
D.
$OO' = 25cm$
Cho nửa đường tròn $\left( O \right)$, đường kính $AB$. Vẽ nửa đường tròn tâm $O'$ đường kính $AO$ (cùng phía với nửa đường tròn $\left( O \right)$). Một cát tuyến bất kỳ qua $A$ cắt $\left( {O'} \right);\left( O \right)$ lần lượt tại $C,D$.
Chọn khẳng định sai?
-
A.
$C$ là trung điểm của $AD$
-
B.
Các tiếp tuyến tại $C$ và $D$ của các nửa đường tròn song song với nhau
-
C.
$O'C{\rm{//}}OD$
-
D.
Các tiếp tuyến tại $C$ và $D$ của các nửa đường tròn cắt nhau
Nếu $BC$ là tiếp tuyến của nửa đường tròn $\left( {O'} \right)$ thì tính $BC$ theo $R$ (với $OA = R$)
-
A.
$BC = 2R$
-
B.
$BC = \sqrt 2 R$
-
C.
$BC = \sqrt 3 R$
-
D.
$BC = \sqrt 5 R$
Cho hai đường tròn $\left( O \right);\left( {O'} \right)$ tiếp xúc ngoài tại $A$. Kẻ tiếp tuyến chung ngoài $MN$ với $M \in \left( O \right)$; $N \in \left( {O'} \right)$. Gọi $P$ là điểm đối xứng với $M$ qua $OO'$; $Q$ là điểm đối xứng với $N$ qua $OO'$.
Khi đó, tứ giác $MNQP$ là hình gì?
-
A.
Hình thang cân
-
B.
Hình thang
-
C.
Hình thang vuông
-
D.
Hình bình hành
$MN + PQ$ bằng
-
A.
$MP + NQ$
-
B.
$MQ + NP$
-
C.
$2MP$
-
D.
$OP + PQ$
Cho hai đường tròn $\left( O \right)$ và $\left( {O'} \right)$ tiếp xúc ngoài tại $A$. Kẻ các đường kính $AOB;AO'C$. Gọi $DE$ là tiếp tuyến chung của hai đường tròn $\left( {D \in \left( O \right);E \in \left( {O'} \right)} \right)$. Gọi $M$ là giao điểm của $BD$ và $CE$. Tính diện tích tứ giác $ADME$ biết $\widehat {DOA} = 60^\circ $ và $OA = 6\,cm.$
-
A.
$12\sqrt 3 \,\,c{m^2}$
-
B.
$12\,\,c{m^2}$
-
C.
$16\,\,c{m^2}$
-
D.
$24\,\,c{m^2}$
Cho hai đường tròn $\left( O \right);\left( {O'} \right)$ cắt nhau tại $A,B$, trong đó $O' \in \left( O \right)$. Kẻ đường kính $O'OC$ của đường tròn $\left( O \right)$. Chọn khẳng định sai?
-
A.
$AC = CB$
-
B.
$\widehat {CBO'} = 90^\circ $
-
C.
$CA,CB$ là hai tiếp tuyến của $\left( {O'} \right)$
-
D.
$CA,CB$ là hai cát tuyến của $\left( {O'} \right)$
Cho các đường tròn \(\left( {A;10\,{\rm{cm}}} \right),{\rm{ }}\left( {B;15\,{\rm{cm}}} \right),{\rm{ }}\left( {C;15\,cm} \right)\) tiếp xúc ngoài với nhau đôi một. Hai đường tròn (B) và (C) tiếp xúc với nhau tại \(A'\). Đường tròn \(\left( A \right)\) tiếp xúc với đường tròn \(\left( B \right)\) và \(\left( C \right)\) lần lượt tại \(C'\) và \(B'.\)
Chọn câu đúng nhất.
-
A.
\(AA'\) là tiếp tuyến chung của đường tròn \(\left( B \right)\) và \(\left( C \right).\)
-
B.
\(AA' = 25\,cm\)
-
C.
\(AA' = 15\,cm\)
-
D.
Cả A và B đều đúng
Tính diện tích tam giác \(A'B'C'.\)
-
A.
\(36\,c{m^2}\)
-
B.
\(72\,c{m^2}\)
-
C.
\(144\,c{m^2}\)
-
D.
\(96\,c{m^2}\)
Cho hai đường tròn (O;5) và (O’;5) cắt nhau tại A và B. Biết OO’=8. Độ dài dây cung AB là
-
A.
6cm
-
B.
7cm
-
C.
5cm
-
D.
8cm
Cho đường tròn tâm \(O\) bán kính \(R = 2cm\) và đường tròn tâm \(O'\) bán kính \(R' = 3cm.\) Biết \(OO' = 6cm.\) Số tiếp tuyến chung của hai đường tròn đã cho là:
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(3\)
-
D.
\(4\)
Cho đường thẳng xy và đường tròn (O; R) không giao nhau. Gọi M là một điểm di động trên xy. Vẽ đường tròn đường kính OM cắt đường tròn (O) tại A và B. Kẻ \(OH \bot xy\) . Chọn câu đúng.
-
A.
Đường thẳng AB luôn đi qua một điểm cố định là \(H.\)
-
B.
Đường thẳng AB luôn đi qua một điểm cố định là trung điểm \(OH\) .
-
C.
Đường thẳng AB luôn đi qua một điểm cố định là giao của \(OH\) và \(AB.\)
-
D.
Đường thẳng AB luôn đi qua một điểm cố định là giao của \(OH\) và \(\left( {O;R} \right).\)
Lời giải và đáp án
Nếu hai đường tròn tiếp xúc với nhau thì số điểm chung của hai đường tròn là
-
A.
$1$
-
B.
$2$
-
C.
$3$
-
D.
$4$
Đáp án : A
Hai đường tròn tiếp xúc với nhau thì có một điểm chung duy nhất
Cho hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$ với $R > r$ cắt nhau tại hai điểm phân biệt và $OO' = d$. Chọn khẳng định đúng?
-
A.
$d = R-r$
-
B.
$d > R + r$
-
C.
$R-r < d < R + r$
-
D.
$d < R - r$
Đáp án : C
Hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$$\left( {R > r} \right)$cắt nhau.
Khi đó $\left( O \right)$ và $\left( {O'} \right)$ có hai điểm chung và đường nối tâm là đường trung trực của đoạn $AB$.
Hệ thức liên hệ $R - r < OO' < R + r$
Cho hai đường tròn $\left( {O;8\,cm} \right)$ và $\left( {O';6cm} \right)$ cắt nhau tại $A,B$ sao cho $OA$ là tiếp tuyến của $\left( {O'} \right)$. Độ dài dây $AB$ là
-
A.
$AB = 8,6\,cm$
-
B.
$AB = 6,9\,cm$
-
C.
$AB = 4,8\,cm$
-
D.
$AB = 9,6\,cm$
Đáp án : D
Sử dụng tính chất đường nối tâm của hai đường tròn cắt nhau và hệ thức lượng trong tam giác vuông.
Vì $OA$ là tiếp tuyến của $\left( {O'} \right)$ nên $\Delta OAO'$ vuông tại $A$.
Vì $\left( O \right)$ và $\left( {O'} \right)$ cắt nhau tại $A,B$ nên đường nối tâm $OO'$ là trung trực của đoạn $AB$.
Gọi giao điểm của $AB$ và $OO'$ là $I$ thì $AB \bot OO'$ tại $I$ là trung điểm của $AB$
Áp dụng hệ thức lượng trong tam giác vuông $OAO'$ ta có
$\dfrac{1}{{A{I^2}}} = \dfrac{1}{{O{A^2}}} + \dfrac{1}{{O'{A^2}}} = \dfrac{1}{{{8^2}}} + \dfrac{1}{{{6^2}}} \Rightarrow AI = 4,8\,cm \Rightarrow AB = 9,6\,cm$
Cho hai đường tròn \(\left( {I;7cm} \right)\) và \(\left( {K;5cm} \right)\). Biết \(IK = 2cm\). Quan hệ giữa hai đường tròn là:
-
A.
Tiếp xúc trong
-
B.
Tiếp xúc ngoài
-
C.
Cắt nhau
-
D.
Đựng nhau
Đáp án : A
Xét hai đường tròn \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) ta có:
+) \(\left| {{R_1} - {R_2}} \right| < {O_1}{O_2} < {R_1} + {R_2}\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) cắt nhau.
+) \({O_1}{O_2} > {R_1} + {R_2}\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) ngoài nhau.
+) \({O_1}{O_2} < \left| {{R_1} - {R_2}} \right|\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) trong nhau.
+) \({O_1}{O_2} = {R_1} + {R_2}\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) tiếp xúc ngoài.
+) \({O_1}{O_2} = \left| {{R_1} - {R_2}} \right|\) thì \(\left( {{O_1};\;{R_1}} \right)\) và \(\left( {{O_2};\;{R_2}} \right)\) tiếp xúc trong.
Ta có: \({R_1} + {R_2} = 7 + 5 = 12;\;\;\left| {{R_1} - {R_2}} \right| = 7 - 5 = 2 = IK.\;\;\)
\( \Rightarrow \left( {I;\;7cm} \right),\;\left( {K;\;5cm} \right)\) tiếp xúc trong với nhau.
Cho đường tròn $\left( O \right)$ bán kính $OA$ và đường tròn $\left( {O'} \right)$ đường kính $OA$.
Vị trí tương đối của hai đường tròn là
-
A.
Nằm ngoài nhau
-
B.
Cắt nhau
-
C.
Tiếp xúc ngoài
-
D.
Tiếp xúc trong
Đáp án: D
Vì hai đường tròn có một điểm chung là $A$ và $OO' = OA - \dfrac{{OA}}{2} = R - r$ nên hai đường tròn tiếp xúc trong.
Dây $AD$ của đường tròn lớn cắt đường tròn nhỏ tại $C$. Khi đó
-
A.
$AC > CD$
-
B.
$AC = CD$
-
C.
$AC < CD$
-
D.
$CD = OD$
Đáp án: B
Sử dụng tính chất tam giác cân.
Xét đường tròn $\left( {O'} \right)$ có $OA$ là đường kính và $C \in \left( {O'} \right)$ nên $\Delta ACO$ vuông tại $C$ hay $OC \bot AD$
Xét đường tròn $\left( O \right)$có $OA = OD \Rightarrow \Delta OAD$ cân tại $O$ có $OC$ là đường cao cũng là đường trung tuyến nên $CD = CA$
Cho hai đường tròn $\left( {{O_1}} \right)$ và $\left( {{O_2}} \right)$ tiếp xúc ngoài tại $A$ và một đường thẳng $d$ tiếp xúc với $\left( {{O_1}} \right);\left( {{O_2}} \right)$ lần lượt tại $B,C$.
Tam giác $ABC$ là
-
A.
Tam giác cân
-
B.
Tam giác đều
-
C.
Tam giác vuông
-
D.
Tam giác vuông cân
Đáp án: C
Sử dụng phương pháp cộng góc
Xét $\left( {{O_1}} \right)$ có ${O_1}B = {O_1}A$
$\Rightarrow \Delta {O_1}AB$ cân tại ${O_1}$
$\Rightarrow \widehat {{O_1}BA} = \widehat {{O_1}AB}$
Xét $\left( {{O_2}} \right)$ có ${O_2}C = {O_2}A $
$\Rightarrow \Delta {O_2}CA$ cân tại ${O_2}$
$\Rightarrow \widehat {{O_2}CA} = \widehat {{O_2}AC}$
Mà $\widehat {{O_1}} + \widehat {{O_2}} = 360^\circ - \widehat C - \widehat B = 180^\circ $
$ \Leftrightarrow 180^\circ - \widehat {{O_1}BA} - \widehat {{O_1}AB} + 180^\circ - \widehat {{O_2}CA} - \widehat {{O_2}AC} = 180^\circ $
$\Leftrightarrow 2\left( {\widehat {{O_1}AB} + \widehat {{O_2}AC}} \right) = 180^\circ $
$ \Rightarrow \widehat {{O_1}AB} + \widehat {{O_2}AC} = 90^\circ $
$ \Rightarrow \widehat {BAC} = 90^\circ $
$\Rightarrow \Delta ABC$ vuông tại $A$.
Lấy $M$ là trung điểm của $BC$. Chọn khẳng định sai?
-
A.
$AM$ là tiếp tuyến chung của hai đường tròn $\left( {{O_1}} \right);\left( {{O_2}} \right)$
-
B.
$AM$ là đường trung bình của hình thang ${O_1}BC{O_2}$
-
C.
$AM = MC$
-
D.
$AM = \dfrac{1}{2}BC$
Đáp án: B
Sử dụng cách chứng minh một đường thẳng là tiếp tuyến của một đường tròn
Vì $\Delta ABC$ vuông tại $A$ có $AM$ là trung tuyến nên $AM = BM = DM = \dfrac{{BC}}{2}$
Xét tam giác $BMA$ cân tại $M$ $ \Rightarrow \widehat {MBA} = \widehat {MAB}$, mà $\widehat {{O_1}BA} = \widehat {{O_1}AB}$ (cmt) nên $\widehat {{O_1}BA} + \widehat {MBA} = \widehat {{O_1}AB} + \widehat {MAB} \Rightarrow \widehat {{O_1}AM} = \widehat {{O_1}BM} = 90^\circ $$ \Rightarrow MA \bot A{O_1}$ tại $A$ nên $AM$ là tiếp tuyến của $\left( {{O_1}} \right)$
Tương tự ta cũng có $ \Rightarrow MA \bot A{O_2}$ tại $A$ nên $AM$ là tiếp tuyến của $\left( {{O_2}} \right)$
Hay $AM$ là tiếp tuyến chung của hai đường tròn
Vậy phương án A, C, D đúng. B sai.
Cho hai đường tròn $\left( {O;20cm} \right)$ và $\left( {O';15cm} \right)$ cắt nhau tại $A$ và$B$. Tính đoạn nối tâm $OO'$, biết rằng$AB = 24cm$ và $O$ và $O'$ nằm cùng phía đối với $AB$ .
-
A.
$OO' = 7cm$
-
B.
$OO' = 8cm$
-
C.
$OO' = 9cm$
-
D.
$OO' = 25cm$
Đáp án : A
Sử dụng tính chất đường nối tâm của hai đường tròn cắt nhau và định lý Pytago
Ta có: $AI = \dfrac{1}{2}AB = 12\,\ cm$
Theo định lý Pytago ta có
$O{I^2} = O{A^2}-A{I^2} = 256$ $ \Rightarrow $ $OI = 16 \,\ cm$ và $O'I = \sqrt {O'{A^2} - I{A^2}} = 9 \,\ cm$
Do đó: $OO' = OI-O'I = 16-9 = 7\left( {cm} \right)$ .
Cho nửa đường tròn $\left( O \right)$, đường kính $AB$. Vẽ nửa đường tròn tâm $O'$ đường kính $AO$ (cùng phía với nửa đường tròn $\left( O \right)$). Một cát tuyến bất kỳ qua $A$ cắt $\left( {O'} \right);\left( O \right)$ lần lượt tại $C,D$.
Chọn khẳng định sai?
-
A.
$C$ là trung điểm của $AD$
-
B.
Các tiếp tuyến tại $C$ và $D$ của các nửa đường tròn song song với nhau
-
C.
$O'C{\rm{//}}OD$
-
D.
Các tiếp tuyến tại $C$ và $D$ của các nửa đường tròn cắt nhau
Đáp án: D
Sử dụng đường trung bình của tam giác và quan hệ từ vuông góc đến song song
Xét đường tròn $\left( {O'} \right)$ có $AO$ là đường kính và $C \in \left( {O'} \right)$ nên $\widehat {ACO} = 90^\circ \Rightarrow AD \bot CO$
Xét đường tròn $\left( O \right)$ có $OA = OD \Rightarrow \Delta OAD$ cân tại $O$ có $OC$ là đường cao nên $OC$ cũng là đường trung tuyến hay $C$ là trung điểm của $AD$.
Xét tam giác $AOD$ có $O'C$ là đường trung bình nên $O'C{\rm{//}}OD$
Kẻ các tiếp tuyến $Cx;Dy$ với các nửa đường tròn ta có $Cx \bot O'C;Dy \bot OD$ mà $O'C{\rm{//}}OD$ nên $Cx{\rm{//}}Dy$
Do đó phương án A, B, C đúng.
Nếu $BC$ là tiếp tuyến của nửa đường tròn $\left( {O'} \right)$ thì tính $BC$ theo $R$ (với $OA = R$)
-
A.
$BC = 2R$
-
B.
$BC = \sqrt 2 R$
-
C.
$BC = \sqrt 3 R$
-
D.
$BC = \sqrt 5 R$
Đáp án: B
Sử dụng định lý Pytago
Ta có $OB = R;OO' = \dfrac{R}{2} \Rightarrow O'B = \dfrac{{3R}}{2}$;$O'C = \dfrac{R}{2}$
Theo định lý Pytago ta có $BC = \sqrt {O'{B^2} - O'{C^2}} = \sqrt {\dfrac{{9{R^2}}}{4} - \dfrac{{{R^2}}}{4}} = \sqrt 2 R$
Cho hai đường tròn $\left( O \right);\left( {O'} \right)$ tiếp xúc ngoài tại $A$. Kẻ tiếp tuyến chung ngoài $MN$ với $M \in \left( O \right)$; $N \in \left( {O'} \right)$. Gọi $P$ là điểm đối xứng với $M$ qua $OO'$; $Q$ là điểm đối xứng với $N$ qua $OO'$.
Khi đó, tứ giác $MNQP$ là hình gì?
-
A.
Hình thang cân
-
B.
Hình thang
-
C.
Hình thang vuông
-
D.
Hình bình hành
Đáp án: A
Sử dụng tính chất tiếp tuyến và dấu hiệu nhận biết các hình đặc biệt
Vì $P$ là điểm đối xứng với $M$ qua $OO'$;
$Q$ là điểm đối xứng với $N$ qua $OO'$ nên $MN = PQ$;
$P \in \left( O \right);Q \in \left( {O'} \right)$
và $MP \bot OO';NQ \bot OO' $
$\Rightarrow MP{\rm{//}}NQ$ mà $MN = PQ$
nên $MNPQ$ là hình thang cân.
$MN + PQ$ bằng
-
A.
$MP + NQ$
-
B.
$MQ + NP$
-
C.
$2MP$
-
D.
$OP + PQ$
Đáp án: A
Sử dụng tính chất hai tiếp tuyến cắt nhau
Kẻ tiếp tuyến chung tại $A$ của $\left( O \right);\left( {O'} \right)$ cắt $MN;PQ$ lần lượt tại $B;C$
Ta có $MNPQ$ là hình thang cân nên $\widehat {NMP} = \widehat {QPM}$.
Tam giác $OMP$ cân tại $O$ nên $\widehat {OMP} = \widehat {OPM}$ suy ra $\widehat {OMP} + \widehat {PMN} = \widehat {OPM} + \widehat {MPQ} \Rightarrow \widehat {QPO} = 90^\circ $
$ \Rightarrow OP \bot PQ$ tại $P \in \left( O \right)$ nên $PQ$ là tiếp tuyến của $\left( O \right)$. Chứng minh tương tự ta có $PQ$ là tiếp tuyến của $\left( {O'} \right)$
Theo tính chất hai tiếp tuyến cắt nhau ta có
$BA = BM = BN;CP = CA = CQ$ suy ra $B;C$ lần lượt là trung điểm của $MN;PQ$ và $MN + PQ = 2MB + 2PC$
$= 2AB + 2AC = 2BC$
Lại có $BC$ là đường trung bình của hình thang $MNQP$ nên $MP + NQ = 2BC$
Do đó $MN + PQ = MP + NQ$.
Cho hai đường tròn $\left( O \right)$ và $\left( {O'} \right)$ tiếp xúc ngoài tại $A$. Kẻ các đường kính $AOB;AO'C$. Gọi $DE$ là tiếp tuyến chung của hai đường tròn $\left( {D \in \left( O \right);E \in \left( {O'} \right)} \right)$. Gọi $M$ là giao điểm của $BD$ và $CE$. Tính diện tích tứ giác $ADME$ biết $\widehat {DOA} = 60^\circ $ và $OA = 6\,cm.$
-
A.
$12\sqrt 3 \,\,c{m^2}$
-
B.
$12\,\,c{m^2}$
-
C.
$16\,\,c{m^2}$
-
D.
$24\,\,c{m^2}$
Đáp án : A
Sử dụng tính chất đường nối tâm của hai đường tròn cắt nhau và hệ thức lượng trong tam giác vuông.
Chứng minh tương tự câu trước ta có được $\widehat {DAE} = 90^\circ $
Mà \(\widehat {BDA} = 90^\circ \) ( vì tam giác \(BAD\) có cạnh \(AB\) là đường kính của \(\left( O \right)\) và \(D \in \left( O \right)\) ) nên \(BD \bot AD \Rightarrow \widehat {MDA} = 90^\circ .\) Tương tự ta có \(\widehat {MEA} = 90^\circ .\)
Nên tứ giác $DMEA$ là hình chữ nhật.
Xét tam giác $OAD$ cân tại $O$ có $\widehat {DOA} = 60^\circ $ nên $\Delta DOA$ đều,
suy ra $OA = AD = 6\,cm$ và $\widehat {ODA} = 60^\circ $
$ \Rightarrow \widehat {ADE} = 30^\circ $.
Xét tam giác $ADE$ ta có
$EA = AD.\tan \widehat {EDA} = 6.\tan 30^\circ = 2\sqrt 3 $
${S_{DMEA}} = AD.AE = 6.2\sqrt 3 = 12\sqrt 3 \,\,c{m^2}$.
Cho hai đường tròn $\left( O \right);\left( {O'} \right)$ cắt nhau tại $A,B$, trong đó $O' \in \left( O \right)$. Kẻ đường kính $O'OC$ của đường tròn $\left( O \right)$. Chọn khẳng định sai?
-
A.
$AC = CB$
-
B.
$\widehat {CBO'} = 90^\circ $
-
C.
$CA,CB$ là hai tiếp tuyến của $\left( {O'} \right)$
-
D.
$CA,CB$ là hai cát tuyến của $\left( {O'} \right)$
Đáp án : D
Sử dụng cách chứng minh một đường thẳng là tiếp tuyến của đường tròn
Xét đường tròn $\left( O \right)$ có $O'C$ là đường kính, suy ra $\widehat {CBO'} = \widehat {CAO'} = 90^\circ $ hay $CB \bot O'B$ tại $B$ và $AC \bot AO'$ tại $A$.
Do đó $AC,BC$ là hai tiếp tuyến của $\left( {O'} \right)$ nên $AC = CB$ (tính chất hai tiếp tuyến cắt nhau)
Nên A, B, C đúng.
Cho các đường tròn \(\left( {A;10\,{\rm{cm}}} \right),{\rm{ }}\left( {B;15\,{\rm{cm}}} \right),{\rm{ }}\left( {C;15\,cm} \right)\) tiếp xúc ngoài với nhau đôi một. Hai đường tròn (B) và (C) tiếp xúc với nhau tại \(A'\). Đường tròn \(\left( A \right)\) tiếp xúc với đường tròn \(\left( B \right)\) và \(\left( C \right)\) lần lượt tại \(C'\) và \(B'.\)
Chọn câu đúng nhất.
-
A.
\(AA'\) là tiếp tuyến chung của đường tròn \(\left( B \right)\) và \(\left( C \right).\)
-
B.
\(AA' = 25\,cm\)
-
C.
\(AA' = 15\,cm\)
-
D.
Cả A và B đều đúng
Đáp án: A
+ Sử dụng cách chứng minh tiếp tuyến: Đường thẳng \(d\) là tiếp tuyến của \(\left( O \right)\) tại \(A\) nếu \(d \bot OA\) tại \(A.\)
+ Sử dụng định lý Pytago để tính \(AA'\)
+) Theo tính chất đoạn nối tâm của hai đường tròn tiếp xúc ngoài ta có:
\(AB = BC' + C'A = 25\,cm;{\rm{ }}AC = AB' + B'C = 25\,cm;\) \({\rm{ }}BC = BA' + A'C = 30cm\) và \(A'\) là trung điểm của \(BC\) (vì \(A'B = A'C = 15cm\))
\(\Delta ABC\) cân tại \(A\) có \(AA'\) là đường trung tuyến nên cũng là đường cao
\( \Rightarrow AA' \bot BC\)
\( \Rightarrow AA'\) là tiếp tuyến chung của hai đường tròn (B) và (C)
Xét tam giác \(AA'C\) vuông tại \(A'\) có:
\(\;A'{A^2}\; = {\rm{ }}A{C^2}\; - {\rm{ }}A'{C^2}\; = {\rm{ }}{25^2} - {\rm{ }}{15^2}\; = 400\)\( \Rightarrow A'A{\rm{ }} = {\rm{ }}20\,cm\)
Tính diện tích tam giác \(A'B'C'.\)
-
A.
\(36\,c{m^2}\)
-
B.
\(72\,c{m^2}\)
-
C.
\(144\,c{m^2}\)
-
D.
\(96\,c{m^2}\)
Đáp án: B
+ Sử dụng định lý Ta-lét
+ Sử dụng công thức tính diện tích tam giác bằng nửa tích đường cao và cạnh đáy tương ứng
Ta có: \(\dfrac{{AC'}}{{AB}} = \dfrac{{AB'}}{{AC}} = \dfrac{{10}}{{25}} = \dfrac{2}{5}\)
\( \Rightarrow B'C'{\rm{ }}//{\rm{ }}BC\) do đó \(B'C' \bot AA'\)
Lại có: \(\dfrac{{B'C'}}{{BC}} = \dfrac{{AC'}}{{AB}} \Rightarrow \dfrac{{B'C'}}{{30}} = \dfrac{2}{5} \Leftrightarrow B'C' = 12\,cm\)
Xét \(\Delta ABA'\) có \(B'C'{\rm{ }}//{\rm{ }}BC\) nên theo định lý Ta-let ta có \(\dfrac{{AH}}{{A'A}} = \dfrac{{BC'}}{{BA}} \Rightarrow \dfrac{{AH}}{{20}} = \dfrac{{15}}{{25}} \Rightarrow AH = 12\,cm\) (do theo câu trước thì \(AA' = 20\,cm\) )
Diện tích tam giác \(A'B'C'\) là: \(S = \dfrac{1}{2}B'C'.AH = \dfrac{1}{2}.12.12 = 72\,\left( {c{m^2}} \right)\)
Cho hai đường tròn (O;5) và (O’;5) cắt nhau tại A và B. Biết OO’=8. Độ dài dây cung AB là
-
A.
6cm
-
B.
7cm
-
C.
5cm
-
D.
8cm
Đáp án : A
Tính chất tam giác cân
Định lí Py-ta-go
Tính chất hai đường tròn cắt nhau
Ta có \(OA=O'A=5cm\) nên tam giác \(AOO'\) cân tại A.
Mà AH vuông góc với OO’ nên H là trung điểm của OO’. Suy ra \(OH=4cm\) .
Xét tam giác AOH vuông tại H nên suy ra
\(A{{H}^{2}}=O{{A}^{2}}-O{{H}^{2}}={{5}^{2}}-{{4}^{2}}=9={{3}^{2}}\).
Vậy \(AH=3cm\) .
Mà \(AB=2AH\) ( mối quan hệ giữa đường nối tâm và dây cung).
Vậy \(AB=6cm\)
Cho đường tròn tâm \(O\) bán kính \(R = 2cm\) và đường tròn tâm \(O'\) bán kính \(R' = 3cm.\) Biết \(OO' = 6cm.\) Số tiếp tuyến chung của hai đường tròn đã cho là:
-
A.
\(1\)
-
B.
\(2\)
-
C.
\(3\)
-
D.
\(4\)
Đáp án : D
Cho hai đường tròn \(\left( {O;\,\,R} \right)\) và \(\left( {O';\,\,R'} \right)\) khi đó ta có:
+) \(OO' > R + R'\) thì hai đường tròn nằm ngoài nhau hay hai đường tròn không có điểm chung.
\( \Rightarrow \) Hai đường tròn có \(4\) tiếp tuyến chung.
+) \(OO' < \left| {R - R'} \right|\) thì hai đường tròn đựng nhau hay hai đường tròn không có điểm chung.
\( \Rightarrow \) Hai đường tròn không có tiếp tuyến chung.
+) \(\left| {R - R'} \right| < OO' < R + R'\) thì hai đường tròn cắt nhau hay hai đường tròn có hai điểm chung.
\( \Rightarrow \) Hai đường tròn có \(2\) tiếp tuyến chung.
+) \(OO' = R + R'\) thì hai đường tròn tiếp xúc ngoài hay hai đường tròn có một điểm chung.
\( \Rightarrow \) Hai đường tròn có \(1\) tiếp tuyến chung.
+) \(OO' < \left| {R - R'} \right|\) thì hai đường tròn tiếp xúc trong hay hai đường tròn có một điểm chung.
\( \Rightarrow \) Hai đường tròn có \(1\) tiếp tuyến chung.
Ta có: \(OO' = 6cm\)
Lại có: \(\left\{ \begin{array}{l}R' = 3cm\\R = 2cm\end{array} \right. \Rightarrow R' + R = 3 + 2 = 5cm < OO'\)
\( \Rightarrow \) Hai đường tròn nằm ngoài nhau
\( \Rightarrow \) Hai đường tròn có \(4\) tiếp tuyến chung.
Cho đường thẳng xy và đường tròn (O; R) không giao nhau. Gọi M là một điểm di động trên xy. Vẽ đường tròn đường kính OM cắt đường tròn (O) tại A và B. Kẻ \(OH \bot xy\) . Chọn câu đúng.
-
A.
Đường thẳng AB luôn đi qua một điểm cố định là \(H.\)
-
B.
Đường thẳng AB luôn đi qua một điểm cố định là trung điểm \(OH\) .
-
C.
Đường thẳng AB luôn đi qua một điểm cố định là giao của \(OH\) và \(AB.\)
-
D.
Đường thẳng AB luôn đi qua một điểm cố định là giao của \(OH\) và \(\left( {O;R} \right).\)
Đáp án : C
+ Sử dụng tam giác đồng dạng
+ Sử dụng hệ thức lượng trong tam giác vuông để chỉ ra các điểm và đoạn thẳng cố định.
Vì \(OH \bot xy,\) nên \(H\) là một điểm cố định và \(OH\) không đổi
Gọi giao điểm của \(AB\) và \(OM\) là \(E;\) giao điểm của \(AB\) với \(OH\) là \(F.\)
Vì \(\left( {O;R} \right)\) và đường tròn đường kính \(OM\) cắt nhau tại \(A;B\) nên \(AB \bot OM\)
Lại có điểm A nằm trên đường tròn đường kính OM nên \(\widehat {OAM} = 90^\circ \)
Xét \(\Delta OEF\) và \(\Delta OHM\) có \(\widehat O\) chung và \(\widehat {OEF} = \widehat {OHM} = 90^\circ \) nên \(\Delta OEF \backsim \Delta OHM\left( {g - g} \right)\)
Suy ra \(\dfrac{{OE}}{{OH}} = \dfrac{{OF}}{{OM}} \Rightarrow OE.OM = OF.OH\)
Xét \(\Delta MAO\) vuông tại \(A\) có \(AE\) là đường cao nên theo hệ thức lượng trong tam giác vuông ta có
\(\begin{array}{*{20}{l}}{OM.OE = O{A^2}\; = {R^2}}\\{\; \Rightarrow OF.OH = {R^2}\; \Rightarrow OF = \dfrac{{{R^2}}}{{OH}}}\end{array}\)
Do \(OH\) không đổi nên \(OF\) cũng không đổi
Vậy \(F\) là một điểm cố định hay \(AB\) luôn đi qua một điểm cố định là giao của \(AB\) và \(OH.\)
Luyện tập và củng cố kiến thức Bài tập hay và khó chương đường tròn Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập ôn tập chương 6 Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Tính chất hai tiếp tuyến cắt nhau Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Vị trí tương đối giữa đường thẳng và đường tròn Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Đường kính và dây của đường tròn Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Sự xác định của đường tròn- Tính chất đối xứng của đường tròn Toán 9 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập ôn tập chương 8 Toán 9
- Trắc nghiệm Bài 3: Hình cầu. Diện tích mặt cầu và thể tích hình cầu Toán 9
- Trắc nghiệm Bài 2: Hình nón. Hình nón cụt. Diện tích xung quanh và thể tích hình nón Toán 9
- Trắc nghiệm Bài 1: Hình trụ. Diện tích xung quanh và thể tích hình trụ Toán 9
- Trắc nghiệm Bài tập ôn tập chương 7 Toán 9