Phần câu hỏi bài 6 trang 59, 60 Vở bài tập toán 9 tập 2


Giải Phần câu hỏi bài 6 trang 59, 60 VBT toán 9 tập 2. Giả sử x_1, x_2 là hai nghiệm của phương trình bậc hai ax^2+bx+c=0...

Lựa chọn câu để xem lời giải nhanh hơn

Câu 20

Giả sử \({x_1},\,\,{x_2}\) là hai nghiệm của phương trình bậc hai \(a{x^2} + bx + c = 0\,\,\). Khoanh tròn vào chữ cái trước kết quả sai: 

(A) \({x_1} + {x_2} = \dfrac{b}{{ - a}};\,\,{x_1}.{x_2} = \dfrac{{ - c}}{{ - a}}\)

(B) \({x_1} + {x_2} = \dfrac{{ - b}}{{ - a}};\,\,{x_1}.{x_2} = \dfrac{c}{a}\)

(C) \({x_1} + {x_2} = \dfrac{{ - b}}{a};\,\,{x_1}.{x_2} =  - \dfrac{c}{{ - a}}\)

(D) \({x_1} + {x_2} = \dfrac{b}{{ - a}};\,\,{x_1}.{x_2} =  - \dfrac{{ - c}}{a}\)

Phương pháp giải:

Sử dụng lý thuyết về Hệ thức Vi-et 

Lời giải chi tiết:

Cho phương trình bậc hai \(a{x^2} + bx + c = 0\,(a \ne 0).\) 
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình thì \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

Nên A, C, D đúng. B sai vì \({x_1} + {x_2} =  - \dfrac{b}{a} \ne \dfrac{{ - b}}{{ - a}}\)

Chọn B.

Câu 21

Cho phương trình \( - 5{x^2} - 4x + 10 = 0\,\,\). Khoanh tròn vào chữ cái trước kết quả đúng:

(A) \({x_1} + {x_2} = \dfrac{4}{5};\,\,{x_1}.{x_2} =  - 2\)

(B) \({x_1} + {x_2} =  - \dfrac{4}{5};\,\,{x_1}.{x_2} = 2\)

(C) \({x_1} + {x_2} = \dfrac{{ - 5}}{4};\,\,{x_1}.{x_2} =  - 2\)

(D) \({x_1} + {x_2} = \dfrac{{ - 4}}{5};\,\,{x_1}.{x_2} =  - 2\)

Phương pháp giải:

Sử dụng hệ thức Vi-et

Cho phương trình bậc hai \(a{x^2} + bx + c = 0\,(a \ne 0).\) 
Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình thì \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

Lời giải chi tiết:

Phương trình \( - 5{x^2} - 4x + 10 = 0\) có \(a =  - 5;b =  - 4;c = 10\) nên \(a.c =  - 5.10 < 0\) nên có hai nghiệm phân biệt \({x_1};{x_2}.\)

Theo hệ thức Vi-et ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{{ - 4}}{{ - 5}}\\{x_1}.{x_2} = \dfrac{{10}}{{ - 5}}\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} =  - \dfrac{4}{5}\\{x_1}.{x_2} =  - 2\end{array} \right.\)

Chọn D.

Câu 22

Nếu \({x_1},\,\,{x_2}\) là hai số đã cho thì chúng là hai nghiệm của phương trình nào sau đây:

(A) \({x^2} + \left( {{x_1} + {x_2}} \right)x + {x_1}.{x_2} = 0\)

(B) \({x^2} - \left( {{x_1} + {x_2}} \right)x + {x_1}.{x_2} = 0\)

(C) \({x^2} + \left( {{x_1} + {x_2}} \right)x - {x_1}.{x_2} = 0\)

(D) \({x^2} - \left( {{x_1}.{x_2}} \right)x + \left( {{x_1} + {x_2}} \right) = 0\)

Khoanh tròn vào chữ cái trước kết quả đúng.

Phương pháp giải:

Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\))

Lời giải chi tiết:

Ta gọi \(\left\{ \begin{array}{l}{x_1} + {x_2} = S\\{x_1}.{x_2} = P\end{array} \right.\,\left( {{S^2} \ge 4P} \right)\)  

thì \({x_1};{x_2}\) là hai nghiệm của phương trình \({x^2} - Sx + P = 0\) hay \({x^2} - \left( {{x_1} + {x_2}} \right)x + {x_1}{x_2} = 0\)

Chọn B.

Câu 23

Đối với phương trình bậc hai \(a{x^2} + bx + c = 0\,\,\). Khoanh tròn vào chữ cái trước kết quả đúng.

(A) Nếu –a – b – c = 0 thì phương trình có một nghiệm là x1 = 1 còn nghiệm kia là \({x_2} =  - \dfrac{{ - c}}{a}\)  

(B) Nếu –a – b + c = 0 thì phương trình có một nghiệm là x1 = -1 còn nghiệm kia là \({x_2} =  - \dfrac{c}{{ - a}}\)

(C) Nếu a + b - c = 0 thì phương trình có một nghiệm là x1 = -1 còn nghiệm kia là \({x_2} =  - \dfrac{c}{a}\)

(D) Nếu b + c – a = 0 thì phương trình có một nghiệm là x1 = -1 còn nghiệm kia là \({x_2} =  - \dfrac{a}{c}\)

Phương pháp giải:

+) Xét phương trình bậc hai: \(a{x^2} + bx + c = 0\,(a \ne 0).\)

 Nếu phương trình có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1,\) nghiệm kia là \({x_2} = \dfrac{c}{a}.\)

Nếu phương trình có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} =  - 1,\) nghiệm kia là \({x_2} =  - \dfrac{c}{a}.\)

Lời giải chi tiết:

Ta có : nếu phương trình có \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1,\) nghiệm kia là \({x_2} = \dfrac{c}{a}\) .

Có thể thấy điều kiện \(a + b + c = 0 \Leftrightarrow  - \left( {a + b + c} \right) = 0\)\( \Leftrightarrow  - a - b - c = 0\) và \({x_2} = \dfrac{c}{a} =  - \dfrac{{ - c}}{a}\)

Nên ta có thể viết lại nếu phương trình có \( - a - b - c = 0\) thì phương trình có một nghiệm là \({x_1} = 1,\) nghiệm kia là \({x_2} =  - \dfrac{{ - c}}{a}\) nên đúng.

Chọn A.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài