Bài 25 trang 63 Vở bài tập toán 9 tập 2


Giải Bài 25 trang 63 VBT toán 9 tập 2. Tìm hai số u và v trong mỗi trường hợp sau:...

Đề bài

Tìm hai số u và v trong mỗi trường hợp sau:

a) \(u + v = 42,\,\,uv = 441\)

b) \(u + v =  - 42,\,\,uv =  - 400\)

c) \(u - v = 5,\,\,uv = 24\) 

Phương pháp giải - Xem chi tiết

+) Tìm hai số biết tổng và tích của chúng :

Sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\)) từ đó giải phương trình ta tìm được hai số thỏa mãn yêu cầu. 

Lời giải chi tiết

a) Hai số cần tìm là hai nghiệm của phương trình \({x^2} - 42x + 441 = 0\,\)

Giải phương trình

Ta có \(\Delta ' = {\left( { - 21} \right)^2} - 1.441 = 0 \)\(\Rightarrow \sqrt {\Delta '}  = 0\)

Suy ra \({x_1} = {x_2} = \dfrac{{ - \left( { - 21} \right)}}{1} = 21\)

Vậy \(u = v = 21\).

b) Hai số cần tìm là hai nghiệm của phương trình \({x^2} - \left( { - 42} \right)x - 400 = 0\)\( \Leftrightarrow {x^2} + 42x - 400 = 0\)

Giải phương trình

Ta có \(\Delta ' = {21^2} - 1.\left( { - 400} \right) = 841 \)\(\Rightarrow \sqrt {\Delta '}  = 29\)

\({x_1} = \dfrac{{ - 21 + 29}}{1} = 8;\)\({x_2} = \dfrac{{ - 21 - 29}}{1} =  - 50\)

Vậy \(u = 8;v =  - 50\) hoặc \(u =  - 50;v = 8.\)

c) Đặt \( - v = t\), ta có \(u + t = u + \left( { - v} \right) \)\(= u - v = 5;ut =  - uv =  - 24\)

Do đó, \(u\) và \(t\) là hai nghiệm của phương trình \({x^2} - 5x - 24 = 0\,\)

Giải phương trình

\(\Delta  = {b^2} - 4ac \)\(= {\left( { - 5} \right)^2} - 4.1.\left( { - 24} \right) = 121\)\( \Rightarrow \sqrt \Delta   = 11\)

\({x_1} = \dfrac{{ - b + \sqrt \Delta  }}{{2a}} \)\(= \dfrac{{ - \left( { - 5} \right) + 11}}{2} = 8;\)\({x_2} = \dfrac{{ - b - \sqrt \Delta  }}{{2a}} \)\(= \dfrac{{ - \left( { - 5} \right) - 11}}{2} =  - 3\)

Do đó: \(u = 8;t =  - 3\) hoặc \(u =  - 3;t = 8\)

Vậy \(u = 8;v = 3\) hoặc \(u =  - 3;v =  - 8\) 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài