Bài 22 trang 61 Vở bài tập toán 9 tập 2


Giải Bài 22 trang 61 VBT toán 9 tập 2. Tìm hai số u và v trong mỗi trường hợp sau...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm hai số u và v trong mỗi trường hợp sau:

LG a

\(u + v = 32,\,\,uv = 231\)

Phương pháp giải:

+) Tìm hai số biết tổng và tích của chúng :

Sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\)) từ đó giải phương trình ta tìm được hai số thỏa mãn yêu cầu.

Lời giải chi tiết:

\(u\) và \(v\) là nghiệm của phương trình \({x^2} - 32x + 231 = 0\,\)

Giải phương trình

\(\Delta ' = {\left( { - 16} \right)^2} - 1.231 = 25\)\( \Rightarrow \sqrt {\Delta '}  = 5\)

\({x_1} = \dfrac{{ - \left( { - 16} \right) + 5}}{1} = 21;\)\({x_2} = \dfrac{{ - \left( { - 16} \right) - 5}}{1} = 11\)

Vậy \(u = 21;v = 11\) hoặc \(u = 11;v = 21.\)

LG b

\(u + v =  - 8,\,\,uv =  - 105\)

Phương pháp giải:

+) Tìm hai số biết tổng và tích của chúng :

Sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\)) từ đó giải phương trình ta tìm được hai số thỏa mãn yêu cầu.

Lời giải chi tiết:

\(u\) và \(v\) là nghiệm của phương trình \({x^2} + 8x - 105 = 0\,\)

\(\Delta ' = {4^2} - 1.\left( { - 105} \right) = 121\)\( \Rightarrow \sqrt {\Delta '}  = 11\)

\({x_1} = \dfrac{{ - 4 + 11}}{1} = 7;\)\({x_2} = \dfrac{{ - 4 - 11}}{1} =  - 15\)

Vậy \(u = 7;v =  - 15\) hoặc \(u =  - 15;v = 7.\)

LG c

\(u + v = 2,\,\,uv = 9\)

Phương pháp giải:

+) Tìm hai số biết tổng và tích của chúng :

Sử dụng: Nếu hai số có tổng bằng \(S\) và tích bằng \(P\) thì hai số đó là hai nghiệm của phương trình \({X^2} - SX + P = 0\) (ĐK: \({S^2} \ge 4P\)) từ đó giải phương trình ta tìm được hai số thỏa mãn yêu cầu.

Lời giải chi tiết:

\(u\) và \(v\) là nghiệm của phương trình \({x^2} - 2x + 9 = 0\,\)

Ta có \(\Delta ' = {\left( { - 1} \right)^2} - 1.9 =  - 8 < 0\)

Suy ra phương trình vô nghiệm hay không có \(u\) và \(v\) thỏa mãn đề bài. 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài