Đề kiểm tra 45 phút chương 3 phần Hình học 9 - Đề số 2


Đề bài

Câu 1 (3 điểm)

1. (1,5 điểm). Hãy điền những từ còn thiếu vào trong các câu sau:

a) Góc nội tiếp là góc có đỉnh……..và hai cạnh chứa…… 

b) Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng……

2. (1,5 điểm). Cho tứ giác \(ABCD\) nội tiếp trong đường tròn. Kéo dài \(AB\) về phía \(B\) một đoạn \(BE\), biết \(\widehat {ADC} = {68^o}\) . Hãy chọn số đo của góc \(CBE\) trong các số đo sau:

(A) \(66^\circ \)                       (B) \(68^\circ \)

(C) \(70^\circ \)                       (D) \(72^\circ \)

Câu 2 (3 điểm). Cho đường tròn \((O)\) và dây \(AB\) không qua tâm \(O\). Trên dây \(AB\) lấy các điểm \(C, D, E\) sao cho \(AC = CD = DE = EB\). Các tia \(OC, OD, OE\) lần lượt cắt đường tròn tại \(M, N\) và \(P\). Chứng minh rằng:

a (1,5 điểm). \(\overparen{AM}=\overparen{PB}\)

b (1,5 điểm). \(\widehat {MON} = \widehat {PON}\)

Câu 3 (4 điểm). Cho đường tròn \((O ; R)\) đường kính \(AB\). Hai dây \(AD\) và \(BC\) cắt nhau tại \(E\) nằm trong đường tròn. Từ \(E\) kẻ \(EF\) vuông góc với \(AB\) tại \(F\). Chứng minh:

a) (1,5 điểm). Tứ giác \(AFEC\) nội tiếp

b) (1,5 điểm). Tam giác \(EFB\) đồng dạng với tam giác \(ACB\)

c) (1 điểm). \(AE.AD + BE.BC = 4{R^2}\)

Lời giải chi tiết

Câu 1:

Phương pháp:

1. Sử dụng định nghĩa góc nội tiếp và số đo của góc tạo bởi tiếp tuyến và dây cung

2. Sử dụng tính chất tứ giác nội tiếp: Tứ giác nội tiếp có tổng hai góc đối bằng \(180^\circ \) và tính chất hai góc kề bù.

Lời giải:

1. a) Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây của đường tròn

b) Số đo của góc tạo bởi tiếp tuyến và dây cung bằng nửa số đo cung bị chắn

2.

 

Vì \(ABCD\) là tứ giác nội tiếp nên \(\widehat {ADC} + \widehat {ABC} = 180^\circ \)  lại có \(\widehat {ABC} + \widehat {CBE} = 180^\circ \) (hai góc kề bù) nên \(\widehat {CBE} = \widehat {ADC} = 68^\circ \) .

Chọn B.

Câu 2:

Phương pháp:

Sử dụng quan hệ giữa đường kính và dây cung: Đường kính đi qua trung điểm một dây không đi qua tâm thì vuông góc với dây đó. 

Sử dụng tính chất tam giác cân

Sử dụng tính chất: Hai góc nội tiếp bằng nhau chắn các cung bằng nhau.

Lời giải:

 

a) Ta có \(AC = CD = DE = EB \Rightarrow D\) là trung điểm của \(AB\) và \(D\) là trung điểm của \(CE.\)

Xét tam giác \(AOB\) cân tại \(O\left( {do\,OA = OB} \right)\) có \(OD\) là đường trung tuyến nên \(OD\) cũng là đường phân giác\( \Rightarrow \widehat {AON} = \widehat {BON}\)  (1)

Xét đường tròn \(\left( O \right)\) có \(D\) là trung điểm dây \(AB\) nên \(OD \bot AB\) tại \(D\) (quan hệ giữa đường kính và dây cung)

Suy ra tam giác \(ODE\) cân tại \(O\) (vì \(OD\) vừa là đường cao vừa là đường trung tuyến) suy ra \(OD\) là phân giác góc \(\widehat {COE} \Rightarrow \widehat {MON} = \widehat {NOP}\left( 2 \right)\)

Từ (1) và (2) suy ra \(\widehat {AOM} - \widehat {MON} = \widehat {BON} - \widehat {PON}\)\( \Leftrightarrow \widehat {AOM} = \widehat {POB}\)

Suy ra \(\overparen{AM}=\overparen{PB}\) (hai góc nội tiếp bằng nhau chắn các cung bằng nhau)

b) Theo (2) ta có \(\widehat {MON} = \widehat {NOP}\).

Câu 3:

Phương pháp:

a) Sử dụng dấu hiệu nhận biết: Tứ giác có tổng hai góc đối bằng \(180^\circ \) là tứ giác nội tiếp

b) Sử dụng trường hợp đồng dạng góc –góc

c) Từ các cặp tam giác đồng dạng suy ra các tỉ lệ cạnh để có hệ thức cần chứng minh.

Lời giải:

 

a) Xét đường tròn \(\left( O \right)\) có \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)

Xét tứ giác \(ACEF\) có \(\widehat {ACE} + \widehat {AFE} = 90^\circ  + 90^\circ  = 180^\circ \) mà hai góc này ở vị trí đối nhau nên tứ giác \(AFEC\) là tứ giác nội tiếp (dhnb)

b) Xét \(\Delta EFB\) và \(\Delta ACB\) có \(\widehat {ACB} = \widehat {EFB}\left( { = 90^\circ } \right);\,\widehat {EBF}\) chung nên \(\Delta EFB \backsim \Delta ACB\left( {g - g} \right)\)

c) Xét đường tròn \(\left( O \right)\) có \(\widehat {ADB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)

Xét \(\Delta EFA\) và \(\Delta BDA\) có \(\widehat {ADB} = \widehat {EFA}\left( { = 90^\circ } \right);\,\widehat {EAF}\) chung nên \(\Delta EFA \backsim \Delta BDA\left( {g - g} \right)\)

Suy ra \(\dfrac{{AE}}{{AB}} = \dfrac{{FA}}{{DA}} \Rightarrow AE.AD = AF.AB\) (1)

Theo câu b) ta có \(\Delta EFB \backsim \Delta ACB \Rightarrow \dfrac{{BE}}{{AB}} = \dfrac{{BF}}{{BC}}\)\( \Rightarrow BE.BC = AB.BF\)   (2)

Từ (1) và (2) và \(AB = 2R\) suy ra \(AE.AD + BE.BC\)\( = AF.AB + BF.AB\)\( = AB\left( {AF + FB} \right) = AB.AB\)\(  =2R.2R = 4{R^2}\)

Vậy \(AE.AD.BE.BC = 4{R^2}\) (đpcm).

Loigiaihay.com

 


Bình chọn:
4.9 trên 7 phiếu
  • Đề kiểm tra 45 phút chương 3 phần Hình học 9 - Đề số 1

    Giải đề kiểm tra 45 phút chương 3: Góc với đường tròn Đề số 1 trang 128 VBT toán lớp 9 tập 2 có đáp án, lời giải chi tiết kèm phương pháp giải đầy đủ tất cả các bài

  • Bài 60 trang 127 Vở bài tập toán 9 tập 2

    Giải bài 60 trang 127 VBT toán 9 tập 2. Cho đường tròn (O) và một điểm A cố định trên đường tròn. Tìm quỹ tích các trung điểm M của dây AB khi điểm B di động trên đường tròn đó...

  • Bài 59 trang 126 Vở bài tập toán 9 tập 2

    Giải bài 59 trang 126 VBT toán 9 tập 2. Cho tam giác ABC vuông ở A. Trên AC lấy một điểm D và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S...

  • Bài 58 trang 126 Vở bài tập toán 9 tập 2

    Giải bài 58 trang 126 VBT toán 9 tập 2. Cho tam giác ABC nội tiếp đường tròn (O) và tia phân giác của góc A cắt đường tròn tại M. Vẽ đường cao AH. Chứng minh rằng:a) OM đi qua trung điểm của dây BC...

  • Bài 57 trang 125 Vở bài tập toán 9 tập 2

    Giải bài 57 trang 125 VBT toán 9 tập 2. Các đường cao hạ từ A và B của tam giác ABC cắt nhau tại H (Góc C khác 90 độ) và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E...

  • Bài 56 trang 124 Vở bài tập toán 9 tập 2

    Giải bài 56 trang 124 VBT toán 9 tập 2. Hãy xem biểu đồ hình quạt biểu diễn học sinh của một trường THCS theo diện ngoại trú, bán trú, nội trú (h.63). Hãy trả lời các câu hỏi sau...

  • Bài 55 trang 124 Vở bài tập toán 9 tập 2

    Giải bài 55 trang 124 VBT toán 9 tập 2. Trong hình 62, đường tròn tâm O có bán kính R = 2m, góc AOB bằng 75 độ a) Tính số đo cung ApB b) Tính độ dài các cung AqB và ApB...

  • Bài 54 trang 123 Vở bài tập toán 9 tập 2

    Giải bài 54 trang 123 VBT toán 9 tập 2. a) Vẽ hình vuông cạnh 4 cm b) Vẽ đường tròn ngoại tiếp hình vuông đó. Tính bán kính R của đường tròn này...

  • Đề kiểm tra 45 phút chương 3 phần Đại số 9 - Đề số 1

    Giải đề kiểm tra 45 phút chương 3: Hệ hai phương trình bậc nhất hai ẩn Đề số 1 trang 36 VBT toán lớp 9 tập 2 có đáp án, lời giải chi tiết kèm phương pháp giải đầy đủ tất cả các bài

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.