Đề kiểm tra 45 phút chương 1 phần Đại số 9 - Đề số 2


Giải đề kiểm tra 45 phút chương 1: Căn bậc hai, căn bậc ba đề số 2 trang 50 VBT toán lớp 9 tập 1 có đáp án, lời giải chi tiết kèm phương pháp giải đầy đủ tất cả các bài

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Phần I. Trắc nghiệm

Câu 1 (1,5 điểm). Hãy chọn đáp án đúng.

Giá trị của \(\dfrac{{\sqrt {9,8} }}{{\sqrt {1,8} }}\) bằng 

(A) \(\dfrac{{49}}{9}\)                                  (B) \(\dfrac{{49}}{3}\)

(C) \(\dfrac{7}{9}\)                                        (D) \(\dfrac{7}{3}\)

Câu 2 (1,5 điểm). Hãy chọn đáp án đúng

Giá trị của \(\dfrac{{3\sqrt 2  - 2\sqrt 3 }}{{\sqrt 6  - 2}}\) bằng

(A) \( - \sqrt 3 \)                                   (B) \( - \sqrt 2 \)

(C) \(\sqrt 3 \)                          (D) \(\sqrt 2 \)

Phần II. Tự luận

Câu 3 (3 điểm). Chứng minh đẳng thức

\(\dfrac{{{{\left( {\sqrt a  - \sqrt b } \right)}^3} + 2a\sqrt a  + b\sqrt b }}{{a\sqrt a  + b\sqrt b }} + \dfrac{{3\left( {\sqrt {ab}  - b} \right)}}{{a - b}} = 3\) với \(a > 0,\,\,b > 0,\,\,a \ne b\)

Câu 4. (4 điểm). Cho biểu thức

\(N = \left( {\dfrac{{\sqrt x  - 2}}{{x - 1}} - \dfrac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\dfrac{{1 - x}}{{\sqrt {2x} }}\) (với \(x > 0,\,\,x \ne 1\))

a) Rút gọn N

b) Chứng tỏ N luôn dương với \(x > 0\) và \(x \ne 1\) 

c) Tìm x sao cho N có giá trị bằng \(\dfrac{{\sqrt 2 }}{3}\)

LG Phần trắc nghiệm

Câu 1. Chọn D.

Phương pháp:

Áp dụng kiến thức: Với biểu thức A không âm và biểu thức B dương, ta có:

\(\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt A }}{{\sqrt B }}\)

Lời giải:

Ta có : \(\dfrac{{\sqrt {9,8} }}{{\sqrt {1,8} }}\)\( = \sqrt {\dfrac{{9,8}}{{1,8}}}  \)\(= \sqrt {\dfrac{{49}}{9}}  \)\(= \dfrac{{\sqrt {49} }}{{\sqrt 9 }} = \dfrac{7}{3}\)

Câu 2. Chọn C.

Phương pháp:

Áp dụng kiến thức : Với các biểu thức A, B, C mà \(A \ge 0\) và \(A \ne {B^2}\), thì:

\(\dfrac{C}{{\sqrt A  \pm B}} = \dfrac{{C\left( {\sqrt A  \mp B} \right)}}{{A - {B^2}}}\)

Lời giải:

\(\dfrac{{3\sqrt 2  - 2\sqrt 3 }}{{\sqrt 6  - 2}}\)\( = \dfrac{{\left( {3\sqrt 2  - 2\sqrt 3 } \right)\left( {\sqrt 6  + 2} \right)}}{{6 - 4}}\) \( = \dfrac{{3\sqrt {12}  - 2\sqrt {18}  + 6\sqrt 2  - 4\sqrt 3 }}{2}\) \( = \dfrac{{6\sqrt 3  - 6\sqrt 2  + 6\sqrt 2  - 4\sqrt 3 }}{2} = \sqrt 3 \).

LG câu 3

Phương pháp:

Biến đổi vế trái sao cho bằng kết quả của vế phải.

Lời giải:

ĐKXĐ : \(a > 0,\,\,b > 0,\,\,a \ne b\)

\(VT=\dfrac{{{{\left( {\sqrt a  - \sqrt b } \right)}^3} + 2a\sqrt a  + b\sqrt b }}{{a\sqrt a  + b\sqrt b }} \)\(+ \dfrac{{3\left( {\sqrt {ab}  - b} \right)}}{{a - b}}\)

\( = \dfrac{{a\sqrt a  - 3a\sqrt b  + 3b\sqrt a  - b\sqrt b  + 2a\sqrt a  + b\sqrt b }}{{{{\left( {\sqrt a } \right)}^3} + {{\left( {\sqrt b } \right)}^3}}} \)\(+ \dfrac{{3\left( {\sqrt {ab}  - b} \right)}}{{\left( {\sqrt a  + \sqrt b } \right)\left( {\sqrt a  - \sqrt b } \right)}}\)

\( = \dfrac{{3a\sqrt a  - 3a\sqrt b  + 3b\sqrt a }}{{\left( {\sqrt a  + \sqrt b } \right)\left( {a - \sqrt {ab}  + b} \right)}} \)\(+ \dfrac{{3\sqrt b \left( {\sqrt a  - \sqrt b } \right)}}{{\left( {\sqrt a  + \sqrt b } \right)\left( {\sqrt a  - \sqrt b } \right)}}\)

\( = \dfrac{{3\sqrt a \left( {a - \sqrt {ab}  + b} \right)}}{{\left( {\sqrt a  + \sqrt b } \right)\left( {a - \sqrt {ab}  + b} \right)}}\)\( + \dfrac{{3\sqrt b }}{{\sqrt a  + \sqrt b }}\)

\( = \dfrac{{3\sqrt a }}{{\sqrt a  + \sqrt b }} + \dfrac{{3\sqrt b }}{{\sqrt a  + \sqrt b }}\)

\( = \dfrac{{3\left( {\sqrt a  + \sqrt b } \right)}}{{\sqrt a  + \sqrt b }} = 3 = VP.\)

Vậy đẳng thức đã cho là một đẳng thức đúng.

LG câu 4

Phương pháp:

a) Vận dụng các phép biến đổi và các phép tính để rút gọn giá trị của N.

b) Với điều kiện \(x > 0\) và \(x \ne 1\), biện luận để chứng tỏ \(N > 0\)

c) Thay giá trị của \(N = \dfrac{{\sqrt 2 }}{3}\) vào biểu thức vừa rút gọn ở câu a rồi tìm giá trị của x.

Lời giải:

a) \(N = \left( {\dfrac{{\sqrt x  - 2}}{{x - 1}} - \dfrac{{\sqrt x  + 2}}{{x + 2\sqrt x  + 1}}} \right).\dfrac{{1 - x}}{{\sqrt {2x} }}\) (với \(x > 0,\,\,x \ne 1\))

\( \Leftrightarrow N = \left( {\dfrac{{\sqrt x  - 2}}{{\left( {\sqrt x  - 1} \right)\left( {\sqrt x  + 1} \right)}} - \dfrac{{\sqrt x  - 2}}{{{{\left( {\sqrt x  + 1} \right)}^2}}}} \right) \cdot \dfrac{{1 - x}}{{\sqrt {2x} }}\)

\( \Leftrightarrow N = \left[ {\dfrac{{\left( {\sqrt x  - 2} \right)\left( {\sqrt x  + 1} \right) - \left( {\sqrt x  + 2} \right)\left( {\sqrt x  - 1} \right)}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}} \right] \cdot \dfrac{{1 - x}}{{\sqrt {2x} }}\)

\( \Leftrightarrow N = \left( {\dfrac{{x - \sqrt x  - 2 - x - \sqrt x  + 2}}{{\left( {\sqrt x  - 1} \right){{\left( {\sqrt x  + 1} \right)}^2}}}} \right) \cdot \dfrac{{1 - x}}{{\sqrt {2x} }}\)

\( \Leftrightarrow N = \dfrac{{\sqrt 2 }}{{\sqrt x  + 1}}\)

b) Vì \(\sqrt x  > 0{\,\rm{  }}\forall x > 0;x \ne 1\) nên \(\sqrt x  + 1 > 0\)

Suy ra \(\dfrac{{\sqrt 2 }}{{\sqrt x  + 1}} > 0{\,\rm{  }}\forall x > 0;x \ne 1\)

Vậy N luôn dương với mọi \(x > 0;x \ne 1\)

c) \(N = \dfrac{{\sqrt 2 }}{3}\) \( \Leftrightarrow \dfrac{{\sqrt 2 }}{{\sqrt x  + 1}} = \dfrac{{\sqrt 2 }}{3} \Leftrightarrow \sqrt x  + 1 = 3\) \( \Leftrightarrow \sqrt x  = 2 \Leftrightarrow x = 4.\)

Vậy khi \(N = \dfrac{{\sqrt 2 }}{3}\) thì \(x = 4.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài