Bài 48 trang 46 Vở bài tập toán 9 tập 1


Giải bài 48 trang 46 VBT toán 9 tập 1. Chứng minh các đẳng thức sau...

Đề bài

Chứng minh các đẳng thức sau

a) \(\left( {\dfrac{{2\sqrt 3  - \sqrt 6 }}{{\sqrt 8  - 2}} - \dfrac{{\sqrt {216} }}{{\sqrt 6 }}} \right).\dfrac{1}{{\sqrt 6 }} =  - 1,5\)

b) \(\left( {\dfrac{{\sqrt {14}  - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15}  - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{\sqrt 7  - \sqrt 5 }} =  - 2\)

c) \(\dfrac{{a\sqrt b  + b\sqrt a }}{{\sqrt {ab} }}:\dfrac{1}{{\sqrt a  - \sqrt b }} = a - b\) với a, b dương và \(a \ne b\)

d) \(\left( {1 + \dfrac{{a + \sqrt a }}{{\sqrt a  + 1}}} \right)\left( {1 - \dfrac{{a - \sqrt a }}{{\sqrt a  - 1}}} \right) = 1 - a\) với \(a \ge 0\) và \(a \ne 1\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\sqrt {AB}  = \sqrt A .\sqrt B \,\,\left( {A \ge 0,B \ge 0} \right)\) và các hằng đẳng thức để biến đổi phân tích các tử (mẫu) thành nhân tử ( nếu có thể) để rút gọn.  

Lời giải chi tiết

a) Biến đổi vế trái ta có :

\(\left( {\dfrac{{2\sqrt 3  - \sqrt 6 }}{{\sqrt 8  - 2}} - \dfrac{{\sqrt {216} }}{{\sqrt 6 }}} \right).\dfrac{1}{{\sqrt 6 }} \)\(=\left( {\dfrac{{2\sqrt 3  - \sqrt 2 \sqrt 3 }}{{2\sqrt 2  - 2}} - \dfrac{{\sqrt {{2^3}{{.3}^3}} }}{3}} \right) \cdot \dfrac{1}{{\sqrt 6 }}\)

\( = \left( {\dfrac{{\sqrt 3 \left( {2 - \sqrt 2 } \right)}}{{2\left( {\sqrt 2  - 1} \right)}} - \dfrac{{2.3.\sqrt {2.3} }}{3}} \right) \cdot \dfrac{1}{{\sqrt 6 }}\)

\( = \left( {\dfrac{{\sqrt 3 \sqrt 2 \left( {\sqrt 2  - 1} \right)}}{{2\left( {\sqrt 2  - 1} \right)}} - \dfrac{{2\sqrt 6 }}{1}} \right)\dfrac{1}{{\sqrt 6 }}\)

\( = \left( {\dfrac{{\sqrt 6 }}{2} - 2\sqrt 6 } \right) \cdot \dfrac{1}{{\sqrt 6 }}\)

\( = \dfrac{1}{2} - 2 =  - 1,5.\)

Vế trái bằng vế phải. Vậy đẳng thức đúng.

b) Biến đổi vế trái, ta có :

\(\left( {\dfrac{{\sqrt {14}  - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt {15}  - \sqrt 5 }}{{1 - \sqrt 3 }}} \right):\dfrac{1}{{\sqrt 7  - \sqrt 5 }}\)

\( = \left( {\dfrac{{\sqrt 2  \cdot \sqrt 7  - \sqrt 7 }}{{1 - \sqrt 2 }} + \dfrac{{\sqrt 3  \cdot \sqrt 5  - \sqrt 5 }}{{1 - \sqrt 3 }}} \right) . \left( {\sqrt 7  - \sqrt 5 } \right)\)  

\( = \left( {\dfrac{{\sqrt 7 \left( {\sqrt 2  - 1} \right)}}{{1 - \sqrt 2 }} + \dfrac{{\sqrt 5 \left( {\sqrt 3  - 1} \right)}}{{1 - \sqrt 3 }}} \right) \cdot \left( {\sqrt 7  - \sqrt 5 } \right)\)

\( = \left( { - \sqrt 7  - \sqrt 5 } \right)\left( {\sqrt 7  - \sqrt 5 } \right)\)

\( =  - \left( {\sqrt 7  + \sqrt 5 } \right)\left( {\sqrt 7  - \sqrt 5 } \right)\)

\( =  - \left[ {{{\left( {\sqrt 7 } \right)}^2} - {{\left( {\sqrt 5 } \right)}^2}} \right] =  - 2\)

Vế trái bằng vế phải. Vậy đẳng thức đúng.

c) Biến đổi vế trái ta có :

\(\dfrac{{a\sqrt b  + b\sqrt a }}{{\sqrt {ab} }}:\dfrac{1}{{\sqrt a  - \sqrt b }} = \) \(\dfrac{{\sqrt a \sqrt a \sqrt b  + \sqrt b \sqrt b \sqrt a }}{{\sqrt {ab} }}:\dfrac{1}{{\sqrt a  - \sqrt b }}\)

\( = \left( {\sqrt a  + \sqrt b } \right)\left( {\sqrt a  - \sqrt b } \right)\)

\( = {\left( {\sqrt a } \right)^2} - {\left( {\sqrt b } \right)^2} = a - b.\)

Vế trái bằng vế phải. Vậy đẳng thức đúng.

d) Biến đổi vế trái, ta có :

\(\left( {1 + \dfrac{{a + \sqrt a }}{{\sqrt a  + 1}}} \right)\left( {1 - \dfrac{{a - \sqrt a }}{{\sqrt a  - 1}}} \right)  \) \(=\left( {1 + \dfrac{{\sqrt a \left( {\sqrt a  + 1} \right)}}{{\sqrt a  + 1}}} \right)\left( {1 - \dfrac{{\sqrt a \left( {\sqrt a  - 1} \right)}}{{\sqrt a  - 1}}} \right)  \)\(=\left( {1 + \sqrt a } \right)\left( {1 - \sqrt a } \right) = 1 - a\)

Vế trái bằng vế phải. Vậy đẳng thức đúng.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài