Bài 37 trang 37 Vở bài tập toán 9 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài 37 trang 37 VBT toán 9 tập 1. Rút gọn các biểu thức sau...

Đề bài

Rút gọn các biểu thức sau

a) \(5\sqrt {\dfrac{1}{5}}  + \dfrac{1}{2}\sqrt {20}  + \sqrt 5 \)      

b) \(\sqrt {\dfrac{1}{2}}  + \sqrt {4,5}  + \sqrt {12,5} \)

c) \(\sqrt {20}  - \sqrt {45}  + 3\sqrt {18}  + \sqrt {72} \)

d) \(0,1\sqrt {200}  + 2\sqrt {0,08}  + 0,4\sqrt {50} \)

Phương pháp giải - Xem chi tiết

+ Sử dụng quy tắc đưa thừa số vào trong dấu căn: Với hai biểu thức \(A,\ B\) mà \(B \ge 0\), ta có:

             \(A\sqrt{B}=\sqrt{A^2B}\),  nếu \(A \ge 0\).

           \(A\sqrt{B}=-\sqrt{A^2B}\),  nếu \(A < 0\).

+  Sử dụng quy tắc đưa thừa số ra ngoài dấu căn: Với hai biểu thức \(A,\ B\) mà \(B \ge 0\), ta có:

           \(\sqrt{A^2.B}=A\sqrt{B}\),  nếu \(A \ge 0\).

           \(\sqrt{A^2.B}=-A\sqrt{B}\),  nếu \(A < 0\).

+ \( \dfrac{A}{\sqrt B}=\dfrac{A\sqrt B}{B}\),  với \(B > 0\). 

Lời giải chi tiết

a) \(5\sqrt {\dfrac{1}{5}}  + \dfrac{1}{2}\sqrt {20}  + \sqrt 5 \)      

\( = 5 \cdot \dfrac{1}{5} \cdot \sqrt 5  + \sqrt 5  + \sqrt 5 \)

\( = \left( {1 + 1 + 1} \right)\sqrt 5 \)

\( = 3\sqrt 5 \) 

b) \(\sqrt {\dfrac{1}{2}}  + \sqrt {4,5}  + \sqrt {12,5} \) \( = \sqrt {\dfrac{1}{2}}  + \sqrt {\dfrac{9}{2}}  + \sqrt {\dfrac{{25}}{2}} \)

\( = \dfrac{1}{2}\sqrt 2  + \dfrac{3}{2}\sqrt 2  + \dfrac{5}{2}\sqrt 2 \)

\( = \dfrac{{9\sqrt 2 }}{2}\)

c) \(\sqrt {20}  - \sqrt {45}  + 3\sqrt {18}  + \sqrt {72} \)\( = 2\sqrt 5  - 3\sqrt 5  + 9\sqrt {2}  + 6\sqrt {2} \) \( =  - \sqrt 5  + 15\sqrt {2} \)

d) \(0,1\sqrt {200}  + 2\sqrt {0,08}  + 0,4\sqrt {50} \)\( = 0,1.10.\sqrt 2  + 2 \cdot \dfrac{1}{{10}}\sqrt 2  + 0,4.5.\sqrt 2 \)

\( = \sqrt 2  + \dfrac{2}{5}\sqrt 2  + 2\sqrt 2 \) \( = \dfrac{{17}}{5}\sqrt 2 \) 

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com