Bài 3.61 trang 134 SBT hình học 12


Giải bài 3.61 trang 134 sách bài tập hình học 10. Trong không gian Oxyz, cho hai điểm...

Đề bài

Trong không gian Oxyz, cho hai điểm A(2; 0; 0), B(0; 0; 8) và điểm C sao cho \(\overrightarrow {AC}  = (0;6;0)\). Tính khoảng cách từ trung điểm I của BC đến đường thẳng OA.

Phương pháp giải - Xem chi tiết

- Tìm tọa độ trung điểm \(I\) của \(BC\).

- Viết phương trình mặt phẳng đi qua \(I\) và vuông góc với \(OA\).

- Tìm giao điểm \(K\) của \(\left( \alpha  \right)\) với đường thẳng trên.

- Khoảng cách bằng \(IK\).

Lời giải chi tiết

\(\begin{array}{l}
C\left( {x;y;z} \right) \Rightarrow \overrightarrow {AC} = \left( {x - 2;y;z} \right)\\
\overrightarrow {AC} = \left( {0,6,0} \right) \Rightarrow \left\{ \begin{array}{l}
x - 2 = 0\\
y = 6\\
z = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = 2\\
y = 6\\
z = 0
\end{array} \right. \Rightarrow C\left( {2;6;0} \right)
\end{array}\)

I là trung điểm BC nên I(1; 3; 4)

\(\overrightarrow {OA}  = \left( {2;0;0} \right)\)

\(OA\) đi qua O và nhận \(\dfrac{1}{2}\overrightarrow {OA}  = \left( {1;0;0} \right)\) làm VTCP

\( \Rightarrow OA:\left\{ \begin{array}{l}x = t\\y = 0\\z = 0\end{array} \right.\)

Gọi \((\alpha )\) là mặt phẳng đi qua I và vuông góc với OA ta có:

\(\left( \alpha  \right) \bot OA \Rightarrow \overrightarrow {{n_\alpha }}  = \dfrac{1}{2}\overrightarrow {OA}  = \left( {1;0;0} \right)\)

Phương trình mặt phẳng \((\alpha )\) là: \(x – 1 = 0 \)

Gọi K(t;0;0) là giao điểm của OA và \((\alpha )\). Tọa độ của K thỏa mãn t-1=0 hay t=1.

Do đó \(K(1; 0; 0)\)

Khoảng cách từ I đến OA là: \(IK = \sqrt {{{(1 - 1)}^2} + {{(0 - 3)}^2} + {{(0 - 4)}^2}}  \) \(= 5\)

Cách khác:

Sau khi tìm được I(1;3;4) và phương trình đường thẳng OA, ta có thể tính khoảng cách ngay như sau:

\(d\left( {I,OA} \right) = \dfrac{{\left| {\left[ {\overrightarrow {OI} ,\overrightarrow {OA} } \right]} \right|}}{{\left| {\overrightarrow {OA} } \right|}}\)

Mà \(\overrightarrow {OI}  = \left( {1;3;4} \right),\overrightarrow {OA}  = \left( {2;0;0} \right)\) nên \(\left[ {\overrightarrow {OI} ,\overrightarrow {OA} } \right] = \left( {0;8; - 6} \right)\)

\( \Rightarrow d\left( {I,OA} \right) = \dfrac{{\sqrt {0 + 64 + 36} }}{{\sqrt {4 + 0 + 0} }} = 5\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài