Bài 3.49 trang 133 SBT hình học 12


Giải bài 3.49 trang 133 sách bài tập hình học 12. Lập phương trình mặt phẳng (P) chứa hai đường thẳng:...

Đề bài

Lập phương trình mặt phẳng (P) chứa hai đường thẳng:

\(d:\left\{ {\begin{array}{*{20}{c}}{x =  - 2 - t}\\{y = 1 + 4t}\\{z = 1 - t}\end{array}} \right.\)   và  \(d':\left\{ {\begin{array}{*{20}{c}}{x =  - 1 + t'}\\{y =  - 3 + 4t'}\\{z = 2 - 3t'}\end{array}} \right.\)

Phương pháp giải - Xem chi tiết

Mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \({d_1},{d_2}\) thì \(\overrightarrow {{n_P}} \) cùng phương với \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\).

Lời giải chi tiết

Đường thẳng d đi qua M(-2; 1; 1) có vecto chỉ phương là \(\overrightarrow u  = \left( { - 1;4; - 1} \right)\)

Đường thẳng d’  đi qua N(-1; -3; 2) có vecto chỉ phương là  \(\overrightarrow {u'}  = \left( {1;4; - 3} \right)\)

Suy ra:  \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 8; - 4; - 8} \right) \ne \overrightarrow 0 \)

Ta có: \(\overrightarrow {MN} (1; - 4;1)\) nên \(\overrightarrow {MN} .\left[ {\overrightarrow a ,\overrightarrow b } \right] = 0\)  do đó hai đường thẳng d và d’ cắt nhau.

Khi đó (P) là mặt phẳng đi qua M(-2; 1; 1) và có \(\overrightarrow {{n_P}}  = (2;1;2)\)

Phương trình của (P) là : 2(x  +2) + (y – 1)  +2(z – 1) = 0  hay  2x + y + 2z + 1 = 0.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài