Bài 3.60 trang 134 SBT hình học 12


Giải bài 3.60 trang 134 sách bài tập hình học 12. Trong không gian Oxyz, cho điểm...

Đề bài

Trong không gian Oxyz, cho điểm A(-4; -2; 4) và đường thẳng d: \(\left\{ {\begin{array}{*{20}{c}}{x =  - 3 + 2t}\\{y = 1 - t}\\{z =  - 1 + 4t}\end{array}} \right.\)

Viết phương trình đường thẳng \(\Delta \) đi qua A, cắt và vuông góc với đường thẳng d.

Phương pháp giải - Xem chi tiết

- Tham số hóa tọa độ giao điểm của \(d\) và \(\Delta \).

- Sử dụng điều kiện vuông góc của \(\Delta \) và \(d\) tìm tọa độ giao điểm ở trên.

- Viết phương trình đường thẳng đi qua hai điểm và kết luận.

Lời giải chi tiết

Ta có:  \(\overrightarrow {{a_d}}  = (2; - 1;4)\)

Xét điểm \(B(–3 + 2t; 1 – t ; –1 + 4t) \) thì \(\overrightarrow {AB}  = (1 + 2t;3 - t; - 5 + 4t)\)

\(AB \bot d \Leftrightarrow \overrightarrow {AB} .\overrightarrow {{a_d}}  = 0\)\( \Leftrightarrow 2(1 + 2t) - (3 - t) + 4( - 5 + 4t) = 0\) \( \Leftrightarrow t = 1\)

Suy ra  \(\overrightarrow {AB}  = (3;2; - 1)\)

Vậy phương trình của \(\Delta \)  là: \(\dfrac{{x + 4}}{3} = \dfrac{{y + 2}}{2} = \dfrac{{z - 4}}{{ - 1}}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài