Bài 3.48 trang 132 SBT hình học 12>
Giải bài 3.48 trang 132 sách bài tập hình học 12. Lập phương trình mặt phẳng (P) đi qua ba điểm...
Đề bài
Lập phương trình mặt phẳng (P) đi qua ba điểm A(-1; -3; 2), B(-2; 1; 1) và C(0; 1; -1).
Phương pháp giải - Xem chi tiết
Mặt phẳng \(\left( P \right)\) đi qua ba điểm \(A,B,C\) thì \(\overrightarrow {{n_P}} \) cùng phương với \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\)
Lời giải chi tiết
Ta có: \(\overrightarrow {AB} ( - 1;4; - 1);\overrightarrow {AC} (1;4; - 3)\)
\( \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\)\( = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}4\\4\end{array}}&{\begin{array}{*{20}{c}}{ - 1}\\{ - 3}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{ - 1}\\{ - 3}\end{array}}&{\begin{array}{*{20}{c}}{ - 1}\\1\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{ - 1}\\1\end{array}}&{\begin{array}{*{20}{c}}4\\4\end{array}}\end{array}} \right|} \right)\) \( = \left( { - 8; - 4; - 8} \right)\)
Suy ra có thể chọn \(\overrightarrow {{n_P}} = (2;1;2)\)
Phương trình của (P) là: \( 2x + (y – 1) + 2(z +1) = 0\) hay \(2x + y + 2z + 1 = 0\).
Loigiaihay.com
- Bài 3.49 trang 133 SBT hình học 12
- Bài 3.50 trang 133 SBT hình học 12
- Bài 3.51 trang 133 SBT hình học 12
- Bài 3.52 trang 133 SBT hình học 12
- Bài 3.53 trang 133 SBT hình học 12
>> Xem thêm