Bài 3.48 trang 132 SBT hình học 12


Giải bài 3.48 trang 132 sách bài tập hình học 12. Lập phương trình mặt phẳng (P) đi qua ba điểm...

Đề bài

Lập phương trình mặt phẳng (P) đi qua ba điểm A(-1; -3; 2), B(-2; 1; 1) và C(0; 1; -1).

Phương pháp giải - Xem chi tiết

Mặt phẳng \(\left( P \right)\) đi qua ba điểm \(A,B,C\) thì \(\overrightarrow {{n_P}} \) cùng phương với \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\)

Lời giải chi tiết

Ta có: \(\overrightarrow {AB} ( - 1;4; - 1);\overrightarrow {AC} (1;4; - 3)\)

\( \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\)\( = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}4\\4\end{array}}&{\begin{array}{*{20}{c}}{ - 1}\\{ - 3}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{ - 1}\\{ - 3}\end{array}}&{\begin{array}{*{20}{c}}{ - 1}\\1\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{ - 1}\\1\end{array}}&{\begin{array}{*{20}{c}}4\\4\end{array}}\end{array}} \right|} \right)\) \( = \left( { - 8; - 4; - 8} \right)\)

Suy ra có thể chọn \(\overrightarrow {{n_P}}  = (2;1;2)\)

Phương trình của (P) là: \( 2x + (y – 1) + 2(z  +1) = 0\)  hay \(2x + y + 2z + 1 = 0\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài