Bài 3.58 trang 133 SBT hình học 12


Giải bài 3.58 trang 133 sách bài tập hình học 12. Lập phương trình tham số của đường thẳng d đi qua điểm ...

Đề bài

Lập phương trình tham số của đường thẳng d đi qua điểm M0(x0, y0, z0) và song song với hai mặt phẳng cắt nhau:

(P) Ax + By + Cz + D = 0  và (Q): A’x + B’y + C’z + D’ = 0

Phương pháp giải - Xem chi tiết

Đường thẳng \(d\) song song với hai mặt phẳng cắt nhau thì \(\overrightarrow {{u_d}}  = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right]\)

Lời giải chi tiết

Do (P) và (Q) cắt nhau nên  \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] \ne \overrightarrow 0 \).

Đường thẳng d đi qua M0 và có vecto chỉ phương \(\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] \) \(= \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}B\\{B'}\end{array}}&{\begin{array}{*{20}{c}}C\\{C'}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}C\\{C'}\end{array}}&{\begin{array}{*{20}{c}}A\\{A'}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}A\\{A'}\end{array}}&{\begin{array}{*{20}{c}}B\\{B'}\end{array}}\end{array}} \right|} \right)\)

\( = \left( {BC' - B'C;CA' - C'A;AB' - A'B} \right)\)

Do đó phương trình tham số của d là: 

\(\left\{ \begin{array}{l}
x = {x_0} + \left( {BC' - B'C} \right)t\\
y = {y_0} + \left( {CA' - C'A} \right)t\\
z = {z_0} + \left( {AB' - A'B} \right)t
\end{array} \right.\)

Đặc biệt phương trình trên cũng là phương trình giao tuyến của hai mặt phẳng cắt nhau (P): Ax + By + Cz + D = 0   và  (Q): A’x + B’y + C’z + D’ = 0  với M0 là điểm chung của (P) và (Q).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài