Bài 16 trang 17 Vở bài tập toán 9 tập 1


Giải bài 16 trang 17 VBT toán 9 tập 1. Tìm x nếu: a) căn(16x) = 8 ...

Đề bài

Tìm \(x\) , nếu

a) \(\sqrt {16x}  = 8\)     

b) \(\sqrt {4x}  = \sqrt 5 \) 

c) \(\sqrt {9\left( {x - 1} \right)}  = 21\)

d) \(\sqrt {4{{\left( {1 - x} \right)}^2}}  - 6 = 0\)

Phương pháp giải - Xem chi tiết

Cách 1: Sử dụng định nghĩa căn bậc hai để tìm x.

Cách 2 :

- Đặt điều kiện để biểu thức có nghĩa: \(\sqrt A \) có nghĩa khi và chỉ khi \(A \ge 0\)

- Bình phương hai vế rồi giải bài toán tìm x.

- Ta sử dụng các cách làm sau:

\(\sqrt A  = B\left( {B \ge 0} \right) \Leftrightarrow A = {B^2}\)

\(\sqrt A  = \sqrt B \left( {A \ge 0;B \ge 0} \right) \Leftrightarrow A = B\)

Lời giải chi tiết

a) Bài ra cho \(\sqrt {16x}  = 8\) nên theo định nghĩa căn bậc hai, suy ra \({8^2} = 16x\)

Ta có : \({8^2} = 16x\) \( \Leftrightarrow 16x = 64\) \( \Leftrightarrow x = 4\)

Với \(x = 4\), rõ ràng \(\sqrt {16x}  = \sqrt {16.4}  = \sqrt {64}  = 8\)

Vậy x phải tìm là \(x = 4\).

b) Bài ra cho \(\sqrt {4x}  = \sqrt 5 \) nên theo định nghĩa căn bậc hai, suy ra \({\left( {\sqrt 5 } \right)^2} = 4x\) hay \(5 = 4x\)

Ta có \(5 = 4x\)\( \Leftrightarrow x = \dfrac{5}{4} = 1,25\)

Với  \(x = 1,25\), ta có \(\sqrt {4x}  = \sqrt {4.1,25}  = \sqrt 5 \)

Vậy x phải tìm là \(x = 1,25\).

c) Bài ra cho \(\sqrt {9\left( {x - 1} \right)}  = 21\) nên theo định nghĩa căn bậc hai, suy ra \({21^2} = 9\left( {x - 1} \right)\)

Ta có :

\({21^2} = 9\left( {x - 1} \right)\)\( \Leftrightarrow {\left( {3.7} \right)^2} = {3^2}.\left( {x - 1} \right)\)\( \Leftrightarrow {7^2} = x - 1 \Leftrightarrow 49 = x - 1 \Leftrightarrow x = 50\)

Với \(x = 50\), ta có :

\(\sqrt {9\left( {x - 1} \right)}  = \sqrt {9\left( {50 - 1} \right)}  \)\(= \sqrt {9.49}  = \sqrt 9 .\sqrt {49} \)\( = 3.7 = 21\)

Vậy giá trị của x phải tìm là \(x = 50.\)  

d) Ta có: \(\sqrt {4{{\left( {1 - x} \right)}^2}}  = \sqrt 4 \sqrt {{{\left( {1 - x} \right)}^2}}  \)\(= 2\left| {1 - x} \right|.\)

Vậy bài toán ban đầu quy về tìm x sao cho \(2\left| {1 - x} \right| - 6 = 0\)

Ta giải \(2\left| {1 - x} \right| - 6 = 0\) như sau :

\(2\left| {1 - x} \right| - 6 = 0\)\( \Leftrightarrow 2\left| {1 - x} \right| = 6 \Leftrightarrow \left| {1 - x} \right| = 3\)

Với \(1 - x = 3\), ta suy ra \(x =  - 2\)

Với \(1 - x =  - 3\) ta suy ra \(x = 4.\)

Vậy x phải tìm có hai giá trị là \(x =  - 2\) và \(x = 4.\)

Lưu ý : Có cách giải khác như sau :

a) Bài ra cho điều kiện x phải tìm thỏa mãn \(\sqrt {16x}  = 8\) .

Để căn thức \(\sqrt {16x} \) có nghĩa, ta có \(16x \ge 0 \Leftrightarrow x \ge 0\)

Vậy x phải tìm trước hết phải là \(x \ge 0.\)

Với \(x \ge 0,\)ta có \(\sqrt {16x}  = \sqrt {16} \sqrt x  = 8\)

Vậy x phải tìm thỏa mãn \(\sqrt {16x}  = 8\) hay \(\sqrt x  = 2\)

Với \(\sqrt x  = 2\), ta tìm được \(x = 4\) (vì rõ ràng từ \(\sqrt x  = 2\), ta có \({2^2} = x\), tức là \(x = 4\) và \(\sqrt 4  = 2\) ).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài