Bài 1.52 trang 23 SBT hình học 12>
Giải bài 1.52 trang 23 sách bài tập hình học 12. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và khoảng cách từ A...
GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT
Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn
Đề bài
Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) và khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\dfrac{{a\sqrt 6 }}{3}\). Thể tích của hình chóp bằng:
A. \(\dfrac{{\sqrt 2 {a^3}}}{{16}}\) B. \(\dfrac{{\sqrt 2 {a^3}}}{9}\)
C. \(\dfrac{{\sqrt 2 {a^3}}}{8}\) D. \(\dfrac{{\sqrt 2 {a^3}}}{6}\)
Phương pháp giải - Xem chi tiết
- Sử dụng tính chất \(d\left( {A,\left( {SBC} \right)} \right) = 2d\left( {O,\left( {SBC} \right)} \right)\), từ đó xác định khoảng cách từ \(O\) đến \(\left( {SBC} \right)\).
- Tính chiều cao và diện tích đáy hình chóp.
- Tính thể tích theo công thức \(V = \dfrac{1}{3}Sh\).
Lời giải chi tiết
Gọi \(O\) là tâm đáy, \(E\) là trung điểm của \(BC\) và \(H\) là hình chiếu của \(O\) trên \(SE\).
Dễ thấy \(d\left( {A,\left( {SBC} \right)} \right) = 2d\left( {O,\left( {SBC} \right)} \right)\) (vì \(AC = 2OC\)) nên \(d\left( {O,\left( {SBC} \right)} \right) = \dfrac{{a\sqrt 6 }}{6}\).
Lại có \(BC \bot \left( {SOE} \right) \Rightarrow BC \bot OH\), mà \(OH \bot SE\) nên \(OH \bot \left( {SBC} \right)\).
Do đó \(d\left( {O,\left( {SBC} \right)} \right) = OH = \dfrac{{a\sqrt 6 }}{6}\).
Tam giác \(SOE\) vuông tại \(O\) có \(OE = \dfrac{a}{2},OH = \dfrac{{a\sqrt 6 }}{6}\) nên:
\(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{O{E^2}}} + \dfrac{1}{{S{O^2}}}\) \( \Rightarrow SO = \dfrac{{OE.OH}}{{\sqrt {O{E^2} - O{H^2}} }}\) \( = \dfrac{{\dfrac{a}{2}.\dfrac{{a\sqrt 6 }}{6}}}{{\sqrt {\dfrac{{{a^2}}}{4} - \dfrac{{6{a^2}}}{{36}}} }} = \dfrac{{a\sqrt 2 }}{2}\)
Thể tích khối chóp \(V = \dfrac{1}{3}SO.{S_{ABCD}}\) \( = \dfrac{1}{3}.\dfrac{{a\sqrt 2 }}{2}.{a^2} = \dfrac{{{a^3}\sqrt 2 }}{6}\).
Chọn D.
Loigiaihay.com


- Bài 1.53 trang 23 SBT hình học 12
- Bài 1.54 trang 23 SBT hình học 12
- Bài 1.55 trang 23 SBT hình học 12
- Bài 1.56 trang 23 SBT hình học 12
- Bài 1.57 trang 24 SBT hình học 12
>> Xem thêm