Bài 1.47 trang 22 SBT hình học 12


Đề bài

Cho tứ diện \(ABCD\). Gọi \(B'\) và \(C'\) lần lượt là trung điểm của \(AB\) và \(AC\). Tỉ số thể tích của khối tứ diện \(AB'C'D\) và khối tứ diện \(ABCD\) bằng:

A. \(\dfrac{1}{2}\)                B. \(\dfrac{1}{4}\)

C. \(\dfrac{1}{6}\)                D. \(\dfrac{1}{8}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính tỉ số thể tích hai khối chóp tam giác:

Xem tại đây.

Lời giải chi tiết

Ta có: \(\dfrac{{{V_{AB'C'D}}}}{{{V_{ABCD}}}} = \dfrac{{AB'}}{{AB}}.\dfrac{{AC'}}{{AC}}.\dfrac{{AD}}{{AD}}\) \( = \dfrac{1}{2}.\dfrac{1}{2}.1 = \dfrac{1}{4}\).

Chọn B.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.