Bài 15 trang 96 Vở bài tập toán 9 tập 2


Giải bài 15 trang 96 VBT toán 9 tập 2. Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn. Qua M kẻ hai đường thẳng. Đường thẳng thứ nhất cắt (O) tại A và B...

Đề bài

Cho đường tròn \((O)\) và một điểm \(M\) cố định không nằm trên đường tròn. Qua \(M\) kẻ hai đường thẳng. Đường thẳng thứ nhất cắt \((O)\) tại \(A\) và \(B\). Đường thẳng thứ hai cắt \((O)\) tại \(C\) và \(D\). Chứng minh \(MA.MB = MC.MD\)

Phương pháp giải - Xem chi tiết

Sử dụng hai góc nội tiếp cùng chắn một cung thì bằng nhau

Chứng minh các tam giác đồng dạng từ đó suy ra tỉ lệ cạnh và hệ thức cần chứng minh.

Lời giải chi tiết

a) \(M\)  nằm bên trong đường tròn

 

Xét \(\Delta MAC\) và \(\Delta MDB\), ta có:

\(\widehat {{AMC}} = \widehat {{BMD}}\) (hai góc đối đỉnh)

\(\widehat {CAB} = \widehat {ADB}\) vì cùng chắn cung \(AD\)

\( \Rightarrow \Delta MAC \backsim \Delta MDB\)

Theo tính chất hai tam giác đồng dạng ta có :

 \(\dfrac{{MA}}{{MD}} = \dfrac{{MC}}{{MB}}\)\( \Rightarrow MA.MB = MC.MD\)

b) \(M\) nằm bên ngoài đường tròn

Xét đường tròn \(\left( O \right)\) có \(\widehat {ADC} = \widehat {ABC}\)  (hai góc nội tếp cùng chắn cung \(AC\))

Xét \(\Delta MAD\) và \(\Delta MCB\), ta có:

Góc \(M\) là góc chung

 \(\widehat B = \widehat D\) vì cùng chắn cung \(AC\)

\( \Rightarrow \Delta MCB \backsim \Delta MAD\)

Theo tính chất của hai tam giác đồng dạng suy ra :

 \(\dfrac{{MC}}{{MA}} = \dfrac{{MB}}{{MD}}\)\( \Rightarrow MC.MD = MA.MB\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3. Góc nội tiếp

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài