Bài 13 trang 95 Vở bài tập toán 9 tập 2>
Giải bài 13 trang 95 VBT toán 9 tập 2. Cho hai đường tròn bằng nhau (O) và (O’) cắt nhau tại A và B. Vẽ đường thẳng qua A cắt (O) tại M và cắt (O’) tại N (A nằm giữa M và N)...
Đề bài
Cho hai đường tròn bằng nhau \((O)\) và \((O’)\) cắt nhau tại \(A \) và \(B\). Vẽ đường thẳng qua \(A\) cắt \((O)\) tại \(M\) và cắt \((O’)\) tại \(N\) (\(A\) nằm giữa \(M\) và \(N\)). Hỏi \(BMN\) là tam giác gì ? Tại sao ?
Phương pháp giải - Xem chi tiết
Sử dụng các góc nội tiếp chắn các cung bằng nhau thì bằng nhau để chỉ ra các góc bằng nhau
Lời giải chi tiết
Từ giả thiết ta có cung \(AB\) của \(\left( O \right)\) và \(\left( {O'} \right)\) bằng nhau \( \Rightarrow \widehat {BMN} = \widehat {ANB}\) vì hai góc nội tiếp chắn các cung bằng nhau thì bằng nhau.
Vậy \(\Delta MBN\) là tam giác cân tại \(B.\)
Loigiaihay.com
- Bài 14 trang 96 Vở bài tập toán 9 tập 2
- Bài 15 trang 96 Vở bài tập toán 9 tập 2
- Bài 16 trang 97 Vở bài tập toán 9 tập 2
- Bài 12 trang 95 Vở bài tập toán 9 tập 2
- Bài 11 trang 95 Vở bài tập toán 9 tập 2
>> Xem thêm