Bài 12 trang 95 Vở bài tập toán 9 tập 2


Đề bài

Cho hai đường tròn \((O)\) và \((O’)\) cắt nhau tại \(A\) và \(B\). Vẽ các đường kính \(AC\) và \(AD\) của hai đường tròn. Chứng minh rằng ba điểm \(C, B, D\) thẳng hàng.

Phương pháp giải - Xem chi tiết

Sử dụng góc nội tiếp chắn nửa đường tròn là góc vuông.

Từ đó chứng minh \(\widehat {ABC} + \widehat {ABD} = 180^\circ \)

Lời giải chi tiết

Nối \(AB,BC,BD.\) Xét các góc nội tiếp :

Với đường tròn \(\left( O \right)\) ta có \(\widehat {ABC} = 90^\circ .\)

Vì \(\widehat {ABC}\) là góc nội tiếp chắn nửa đường tròn.

Với đường tròn \(\left( {O'} \right)\) ta có \(\widehat {ABD} = 90^\circ .\)

Vì \(\widehat {ABD}\) là góc nội tiếp chắn nửa đường tròn.

 \( \Rightarrow \widehat {ABC} + \widehat {ABD} = 180^\circ \)

Vậy ba điểm \(C,B,D\) thẳng hàng.

Loigiaihay.com


Bình chọn:
4 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.