Bài 14 trang 96 Vở bài tập toán 9 tập 2


Đề bài

Trên đường tròn \((O)\) đường kính \(AB\), lấy điểm \(M\) (khác \(A\) và \(B\)). vẽ tiếp tuyến của \((O)\) tại \(A\). Đừờng thẳng \(BM\) cắt tiếp tuyến đó tại \(C\). Chứng minh rằng ta luôn có \(M{A^2} = {\rm{ }}MB.MC\)

Phương pháp giải - Xem chi tiết

+ Sử dụng góc nội tiếp chắn nửa đường tròn là góc vuông.

+ Chứng minh \(\Delta {\rm M}{\rm A}{\rm B}\) đồng dạng với \(\Delta MCA\) từ đó suy ra tỉ lệ cạnh để có đẳng thức cần chứng minh.

Lời giải chi tiết

Nối \(AM\)

Xét \(\Delta AMB\) và \(\Delta AMC.\)

Ta có \(\widehat M = 90^\circ \) vì góc nội tiếp chắn nửa đường tròn

Và \(\widehat {MAC} = \widehat {MBA}\) vì \(\widehat {MBA} + \widehat {MAB} = 90^\circ \) (vì tam giác \(MAB\) vuông tại \(M\) ) và \(\widehat {MAB} + \widehat {MAC} = 90^\circ \) (do \(\widehat {BAC} = 90^\circ \))

Hai tam giác vuông có góc nhọn bằng nhau \( \Rightarrow \)  \(\Delta MAB\) \( \backsim \) \(\Delta MCA\) nên ta có :

\(\dfrac{{MA}}{{MC}} = \dfrac{{MB}}{{MA}} \Rightarrow M{A^2} = MB.MC\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3. Góc nội tiếp

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.