Bài 1.14 trang 21 SBT hình học 11


Đề bài

Cho ba điểm không thẳng hàng \(I\), \(J\), \(K\). Hãy dựng tam giác \(ABC\) nhận \(I\), \(J\), \(K\) lần lượt là trung điểm của các cạnh \(BC\), \(AB\), \(AC\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất tâm đối xứng bảo toàn khoảng cách giữa hai điểm.

Lời giải chi tiết

Giả sử tam giác \(ABC\) đã dựng được.

Cách dựng điểm \(C\):

Lấy điểm \(M\) bất kì. Gọi \(N\) là ảnh của \(M\) qua phép đối xứng tâm \(I\). \(P\) là ảnh của \(N\) qua phép đối xứng tâm \(J\). \(Q\) là ảnh của \(P\) qua phép đối xứng tâm \(K\).

Khi đó \(\vec{CM}=-\vec{BN}=\vec{AP}=-\vec{CQ}\).

Do đó \(C\) là trung điểm của \(QM\).

Tương tự, cách dựng điểm \(B\):

Lấy điểm \(O\) bất kỳ, gọi \(O_1\) là ảnh của \(O\) qua phép đối xứng tâm \(J\), \(O_2\) là ảnh của \(O_1\) qua phép đối xứng tâm \(K\), \(O_3\) là ảnh của \(O_2\) qua phép đối xứng tâm \(I\)

\(B\) là trung điểm của \(OO_3\).

Cách dựng điểm \(A\):

Lấy điểm \(H\) bất kỳ, gọi \(H_1\) là ảnh của \(H\) qua phép đối xứng tâm \(J\), \(H_2\) là ảnh của \(H_1\) qua phép đối xứng tâm \(K\), \(H_3\) là ảnh của \(H_2\) qua phép đối xứng tâm \(I\)

\(A\) là trung điểm của \(HH_3\).

Từ đó suy ra cách dựng tam giác \(ABC\).

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Phép đối xứng tâm

  • Bài 1.13 trang 21 SBT hình học 11

    Giải bài 1.13 trang 21 sách bài tập hình học 11. Trong mặt phẳng Oxy cho đường thẳng d có phương trình: x-2y+2=0 và d' có phương trình: x-2y-8=0. Tìm phép đối xứng tâm biến d thành d’ và biến trục Ox thành chính nó.

  • Bài 1.12 trang 20 SBT hình học 11

    Giải bài 1.12 trang 20 sách bài tập hình học 11. Trong mặt phẳng Oxy, cho hai điểm I(1;2), M(-2;3), đường thẳng d có phương trình 3x-y+9=0 và đường tròn (C) có phương trình...

  • Bài 1.11 trang 20 SBT hình học 11

    Giải bài 1.11 trang 20 sách bài tập hình học 11. Cho tứ giác ABCE. Dựng ảnh của tam giác ABC qua phép đối xứng tâm E.

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài