Câu hỏi 1 trang 32 SGK Giải tích 12


Giải câu hỏi 1 trang 32 SGK Giải tích 12: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số đã học theo sơ đồ trên....

Đề bài

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số đã học theo sơ đồ trên

y = ax + b

y = ax2 + bx + c

Video hướng dẫn giải

Lời giải chi tiết

* Hàm số y = ax + b

Trường hợp a > 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = a > 0. Vậy hàm số đồng biến trên toàn bộ R.

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = + \infty \cr
& \mathop {\lim }\limits_{x \to - \infty } y = - \infty \cr} \)

Bảng biến thiên

3. Vẽ đồ thị

Trường hợp a < 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = a < 0. Vậy hàm số đồng biến trên toàn bộ R.

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = - \infty \cr
& \mathop {\lim }\limits_{x \to - \infty } y = + \infty \cr} \)

Bảng biến thiên

Vẽ đồ thị

* Hàm số y = ax2 + bx + c

Trường hợp a > 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = 2ax + b. 

\(y' = 0 \Rightarrow x = {{ - b} \over {2a}}\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = + \infty \cr 
& \mathop {\lim }\limits_{x \to - \infty } y = + \infty \cr} \)

Bảng biến thiên

Hàm số nghịch biến trên khoảng (-∞, \({{ - b} \over {2a}}\)).

Hàm số đồng biến trên khoảng (\({{ - b} \over {2a}}\), +∞).

Hàm số đạt cực tiểu bằng \( - {\Delta  \over {4a}}\) tại x = \({{ - b} \over {2a}}\)

Vẽ đồ thị

Trường hợp a < 0

1. TXĐ: D = R.

2. Sự biến thiên.

y’ = 2ax + b. 

Cho \(y' = 0 \Rightarrow x = {{ - b} \over {2a}}\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = - \infty \cr
& \mathop {\lim }\limits_{x \to + \infty } y = - \infty \cr} \)

Bảng biến thiên

Hàm số đồng biến trên khoảng (-∞, \({{ - b} \over {2a}}\)).

Hàm số nghịch biến trên khoảng \(({{ - b} \over {2a}}, +∞)\).

Hàm số đạt cực đại bằng \( - {\Delta  \over {4a}}\) tại x = \({{ - b} \over {2a}}\)

Vẽ đồ thị

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.4 trên 11 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài