Bài 4 trang 44 SGK Giải tích 12

Bình chọn:
4.4 trên 12 phiếu

Giải bài 4 trang 44 SGK Giải tích 12. Bằng cách khảo sát hàm số, hãy tìm số nghiệm của các phương trình sau:

Đề bài

Bằng cách khảo sát hàm số, hãy tìm số nghiệm của các phương trình sau:

a) \({x^3}-3{x^2} + 5 = 0\);      

b) \(- 2{x^3} + 3{x^2}-2 = 0\) ;      

c) \(2{x^2}-{x^4} =  - 1\).

Phương pháp giải - Xem chi tiết

+) Khảo sát sự biến thiên của các hàm số \(y=f\left( x \right)\)  lập bảng biến thiên, vẽ đồ thị hàm số.

+) Số nghiệm của phương trình \(f\left( x \right)=a\) là số giao điểm của đồ thị hàm số \(y=f\left( x \right)\)   với đường thẳng \(y=a.\)

+) Khi đó dựa vào đồ thị hàm số để xác định số giao điểm và kết luận.

Lời giải chi tiết

a) Xét hàm số: \(y={{x}^{3}}-3{{x}^{2}}+5\)

+) Tập xác định: \(D=R.\)

+) Sự biến thiên:

Ta có: \(y'=3{{x}^{2}}-6x\Rightarrow y'=0\Leftrightarrow 3{{x}^{2}}-6x=0\Leftrightarrow \left[ \begin{align}  & x=0 \\  & x=2 \\ \end{align} \right..\)

Hàm số đồng biến trên khoảng \(\left( \infty ;0 \right)\) và \(\left( 2;+\infty  \right)\); hàm số nghịch biến trên khoảng \(\left( 0;\ 2 \right).\)

Hàm số đạt cực đại tại \(x=0;\ \ {{y}_{CD}}=5.\)

Hàm số đạt cực tiểu tại \(x=2;\ \ {{y}_{CT}}=1.\)

+) Giới hạn: \(\underset{x\to -\infty }{\mathop{\lim }}\,y=-\infty ;\ \ \underset{x\to +\infty }{\mathop{\lim }}\,y=+\infty .\)

Bảng biến thiên:

 

+) Đồ thị hàm số:

 

Đồ thị hàm số cắt trục Oy tại điểm \(\left( 0;\ 5 \right).\)

Số nghiệm của phương trình \({{x}^{3}}-3{{x}^{2}}+5=0\) là số giao điểm của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+5\) và trục hoành.

Từ đồ thị hàm số ta thấy đồ thị hàm số giao với trục hoành tại 1 điểm duy nhất.

Vậy phương trình đã cho có nghiệm duy nhất.

b) \(-2{{x}^{3}}+3{{x}^{2}}-2=0.\)

Ta có: \(Pt\Leftrightarrow 2{{x}^{3}}-3{{x}^{2}}=-2.\)

Xét hàm số: \(y=2{{x}^{3}}-3{{x}^{2}}.\)

Tập xác định: \(D=R.\)

Ta có: \(y'=6{{x}^{2}}-6x\Rightarrow y'=0\Leftrightarrow 6{{x}^{2}}-6x=0\Leftrightarrow \left[ \begin{align}  & x=0 \\  & x=1 \\ \end{align} \right..\)

Hàm số đồng biến trên khoảng \(\left( -\infty ;\ 0 \right)\) và \(\left( 1;+\infty  \right);\) nghịch biến trên khoảng \(\left( 0;\ 1 \right).\)

Hàm số đạt cực đại tại \(x=0;\ \ {{y}_{CD}}=0.\)

Hàm số đạt cực tiểu tại \(x=1;\ {{y}_{CT}}=-1.\)

Giới hạn: \(\underset{x\to -\infty }{\mathop{\lim }}\,y=-\infty ;\ \ \underset{x\to +\infty }{\mathop{\lim }}\,y=+\infty .\)

Bảng biến thiên:

 

Đồ thị:

 

Số nghiệm của phương trình \(-2{{x}^{3}}+3{{x}^{2}}-1=0\)  là số giao điểm của đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}\) và đường thẳng \(y=-2.\)

Dựa vào đồ thị hàm số ta thấy đường thẳng \(y=-2\) cắt đồ thị hàm số \(y=2{{x}^{3}}-3{{x}^{2}}\) tại 1 điểm duy nhất.

Vậy phương trình đã cho có nghiệm duy nhất.

c) \(2{{x}^{2}}-{{x}^{4}}=-1.\)

Xét hàm số: \(y=2{{x}^{2}}-{{x}^{4}}.\)

Tập xác định: \(D=R.\)

Sự biến thiên: \(y'=4x-4{{x}^{3}}\Rightarrow y'=0\Leftrightarrow 4x-4{{x}^{3}}=0\Leftrightarrow \left[ \begin{align}& x=0 \\  & x=\pm 1 \\ \end{align} \right..\)

Hàm số đồng biến trên khoảng \(\left( -\infty ;\ -1 \right)\) và \(\left( 0;\ 1 \right);\) hàm số nghịch biến trên khoảng \(\left( -1;\ 0 \right)\) và \(\left( 1;+\infty  \right).\)

Hàm số đạt cực đại tại hai điểm \(x=-1\) và \(x=1;\ \ {{y}_{CD}}=1.\)

Hàm số đạt cực tiểu tại \(x=0;\ {{y}_{CT}}=0.\)

Giới hạn: \(\underset{x\to -\infty }{\mathop{\lim }}\,=-\infty ;\underset{x\to +\infty }{\mathop{\lim }}\,=-\infty .\)

Bảng biến thiên:

 

Đồ thị:

 

Số nghiệm của phương trình \(2{{x}^{2}}-{{x}^{4}}=-1\) là số giao điểm của đồ thị hàm số \(y=2{{x}^{2}}-{{x}^{4}}\) và đường thẳng \(y=-1.\)

Dựa vào đồ thị hàm số ta thấy đường thẳng \(y=-1\) cắt đồ thị hàm số \(y=2{{x}^{2}}-{{x}^{4}}\)  tại hai điểm phân biệt.

Vậy phương trình đã cho có 2 nghiệm phân biệt.

 

 

        

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan