Bài 8 trang 44 SGK Giải tích 12


Giải bài 8 trang 44 SGK Giải tích 12. Cho hàm số

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(y = {x^3} + (m + 3){x^2} + 1 - m\) (m là tham số) có đồ thị là (Cm).

LG a

a) Xác định \(m\) để hàm số có điểm cực đại là \(x=-1\).

Phương pháp giải:

Sử dụng kiến thức: hàm số  \(y = f\left( x \right)\) đạt cực đại tại tại điểm  \(x= {x_0} \Leftrightarrow \left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right..\)

Lời giải chi tiết:

\(y = {x^3} + \left( {m + 3} \right){x^2} + 1 - m.\)

Ta có:  \(y' = 3{x^2} + 2\left( {m + 3} \right)x \Rightarrow y'' = 6x + 2\left( {m + 3} \right).\)

Hàm số đạt cực đại tại điểm  \(x =  - 1\) \(\Rightarrow \left\{ \begin{array}{l}y'\left( -1 \right) = 0\\y''\left( -1 \right) < 0\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}3 - 2\left( {m + 3} \right) = 0\\ - 6 + 2\left( {m + 3} \right) < 0\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}m =  - \dfrac{3}{2}\\m < 0\end{array} \right. \Rightarrow m =  - \dfrac{3}{2}.\)

Vậy \(m=-\dfrac{3}{2}.\) thì hàm số đã cho đạt cực đại tại \(x=-1\).

LG b

b) Xác định \(m\) để đồ thị (Cm) cắt trục hoành tại \(x=-2\).

Phương pháp giải:

Đồ thị hàm số cắt trục hoành tại điểm có M hoành độ  \(x = a \Rightarrow M(a;0) \). Thay tọa độ điểm M vào công thức hàm số để tìm m.

Lời giải chi tiết:

Đồ thị hàm số cắt trục hoành tại điểm có M hoành độ  \(x = -2 \Rightarrow M(-2;0) \).

\(\begin{array}{l}\Rightarrow {\left( { - 2} \right)^3} + \left( {m + 3} \right){\left( { - 2} \right)^2} + 1 - m = 0\\ \Leftrightarrow  - 8 + 4\left( {m + 3} \right) + 1 - m = 0\\\Leftrightarrow 4m + 5 - m = 0\\\Leftrightarrow 3m =  - 5\\\Leftrightarrow m =  - \dfrac{5}{3}.\end{array}\)

Loigiaihay.com


Bình chọn:
4.2 trên 15 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài