Câu 69 trang 127 Sách bài tập Hình học 11 Nâng cao


Đề bài

Đáy của hình chóp A.BCD là tam giác đều. Đường cao của hình chóp kẻ từ đỉnh A đi qua trung điểm H của cạnh CD. Cắt hình chóp đó bởi mặt phẳng song song với AB và CD và cách đỉnh B một khoảng bằng d. Tính diện tích thiết diện thu được, biết cạnh của tam giác đều BCD là a và \(AB = a\sqrt 2 \).

Lời giải chi tiết

  

Dễ thấy thiết diện là hình bình hành PQRS. Mặt khác theo giả thiết \(C{\rm{D}} \bot \left( {AHB} \right)\) nên \(C{\rm{D}} \bot AB\). Vậy PQRS là hình chữ nhật.

Kẻ \(HE \bot AB\) thì \(HE \bot \left( {PQ{\rm{RS}}} \right)\). Kẻ IK // HE thì \(IK \bot \left( {PQ{\rm{RS}}} \right)\). Do AB // (PQRS) và \(d\left( {B;\left( {PQ{\rm{RS}}} \right)} \right) = d\) nên IK = d.

Ta có

\(HE = {{AH.HB} \over {AB}} = {{\sqrt {A{B^2} - B{H^2}} .HB} \over {AB}} = {{a\sqrt {15} } \over {4\sqrt 2 }}\)

Lại có

 \(\eqalign{  & {{IK} \over {HE}} = {{BI} \over {BH}} = {{R{\rm{S}}} \over {C{\rm{D}}}}  \cr  &  \Rightarrow R{\rm{S}} = {{da} \over {a\sqrt {15} }}.4\sqrt 2  = {{4\sqrt 2 d} \over {\sqrt {15} }};  \cr  & BI = {{IK.BH} \over {HE}} = {{d.{{a\sqrt 3 } \over 2}} \over {{{a\sqrt {15} } \over {4\sqrt 2 }}}} = {{2\sqrt 2 d} \over {\sqrt 5 }} \cr} \)

Mặt khác \({{IJ} \over {AB}} = {{HI} \over {HB}} = {{\left( {HB - IB} \right)} \over {HB}};\)

Từ đó \(IJ = {{AB\left( {HB - IB} \right)} \over {HB}} = {{\sqrt 2 \left( {a\sqrt {15}  - 4\sqrt 2 d} \right)} \over {\sqrt {15} }}\)

Vậy \({S_{PQ{\rm{RS}}}} = R{\rm{S}}.IJ = {8 \over {15}}d\left( {a\sqrt {15}  - 4\sqrt 2 d} \right)\) .

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 5: Khoảng cách

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.