Câu 69 trang 127 Sách bài tập Hình học 11 Nâng cao>
Giải bài tập Câu 69 trang 127 Sách bài tập Hình học 11 Nâng cao
Đề bài
Đáy của hình chóp A.BCD là tam giác đều. Đường cao của hình chóp kẻ từ đỉnh A đi qua trung điểm H của cạnh CD. Cắt hình chóp đó bởi mặt phẳng song song với AB và CD và cách đỉnh B một khoảng bằng d. Tính diện tích thiết diện thu được, biết cạnh của tam giác đều BCD là a và \(AB = a\sqrt 2 \).
Lời giải chi tiết
Dễ thấy thiết diện là hình bình hành PQRS. Mặt khác theo giả thiết \(C{\rm{D}} \bot \left( {AHB} \right)\) nên \(C{\rm{D}} \bot AB\). Vậy PQRS là hình chữ nhật.
Kẻ \(HE \bot AB\) thì \(HE \bot \left( {PQ{\rm{RS}}} \right)\). Kẻ IK // HE thì \(IK \bot \left( {PQ{\rm{RS}}} \right)\). Do AB // (PQRS) và \(d\left( {B;\left( {PQ{\rm{RS}}} \right)} \right) = d\) nên IK = d.
Ta có
\(HE = {{AH.HB} \over {AB}} = {{\sqrt {A{B^2} - B{H^2}} .HB} \over {AB}} = {{a\sqrt {15} } \over {4\sqrt 2 }}\)
Lại có
\(\eqalign{ & {{IK} \over {HE}} = {{BI} \over {BH}} = {{R{\rm{S}}} \over {C{\rm{D}}}} \cr & \Rightarrow R{\rm{S}} = {{da} \over {a\sqrt {15} }}.4\sqrt 2 = {{4\sqrt 2 d} \over {\sqrt {15} }}; \cr & BI = {{IK.BH} \over {HE}} = {{d.{{a\sqrt 3 } \over 2}} \over {{{a\sqrt {15} } \over {4\sqrt 2 }}}} = {{2\sqrt 2 d} \over {\sqrt 5 }} \cr} \)
Mặt khác \({{IJ} \over {AB}} = {{HI} \over {HB}} = {{\left( {HB - IB} \right)} \over {HB}};\)
Từ đó \(IJ = {{AB\left( {HB - IB} \right)} \over {HB}} = {{\sqrt 2 \left( {a\sqrt {15} - 4\sqrt 2 d} \right)} \over {\sqrt {15} }}\)
Vậy \({S_{PQ{\rm{RS}}}} = R{\rm{S}}.IJ = {8 \over {15}}d\left( {a\sqrt {15} - 4\sqrt 2 d} \right)\) .
Loigiaihay.com
- Câu 70 trang 127 Sách bài tập Hình học 11 Nâng cao
- Câu 68 trang 127 Sách bài tập Hình học 11 Nâng cao
- Câu 67 trang 127 Sách bài tập Hình học 11 Nâng cao
- Câu 66 trang 127 Sách bài tập Hình học 11 Nâng cao
- Câu 65 trang 127 Sách bài tập Hình học 11 Nâng cao
>> Xem thêm
Các bài khác cùng chuyên mục