Câu 59 trang 126 Sách bài tập Hình học 11 Nâng cao


Đề bài

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh SA vuông góc với mặt đáy SA = a. Tính:

a) Khoảng cách từ điểm S đến mp(A1CD) trong đó A1 là trung điểm của SA;

b) Khoảng cách giữa AC và SD.

Lời giải chi tiết

 

a) Ta có \(C{\rm{D}} \bot \left( {SA{\rm{D}}} \right)\) nên \(\left( {C{\rm{D}}{A_1}} \right) \bot \left( {SA{\rm{D}}} \right)\). Từ đó, khi kẻ đường cao SH của tam giác SA1D thì:

\(SH \bot mp\left( {C{\rm{D}}{A_1}} \right)\).

và \(SH = d\left( {S;mp\left( {C{\rm{D}}{A_1}} \right)} \right)\).

Ta có

\(\eqalign{  & SH.{A_1}D = 2{{\rm{S}}_{S{A_1}D}} = {S_{SA{\rm{D}}}} = {{{a^2}} \over 2}  \cr  & {A_1}D = \sqrt {{a^2} + {{{a^2}} \over 4}}  = {{a\sqrt 5 } \over 2} \cr} \)

Vậy \(SH = {{{a^2}} \over 2}.{2 \over {a\sqrt 5 }} = {a \over {\sqrt 5 }} = {{a\sqrt 5 } \over 5}.\)

Kẻ qua D đường thẳng song song với AC, cắt đường thẳng AB tại B', khi đó \(B'D = a\sqrt 2 ,AB' = a,SB' = a\sqrt 2 ,S{\rm{D}} = a\sqrt 2 \).

Vậy SB’D là tam giác đều. Gọi I là trung điểm của SB’ thì:

\(DI = {{a\sqrt 6 } \over 2},SB' \bot \left( {AI{\rm{D}}} \right)\).

từ đó \(\left( {AI{\rm{D}}} \right) \bot \left( {SB'D} \right)\).

Vậy khi kẻ đường cao AK của tam giác AID thì AK là khoảng cách từ A đến mp(SB’D). Mặt khác AC // (SB’D) nên AK cũng là khoảng cách giữa AC và SD.

Ta có \({\rm{AI = }}{{a\sqrt 2 } \over 2},A{\rm{D}} = a\)

Vì \(A{\rm{D}} \bot \left( {SAB} \right)\) nên \(A{\rm{D}} \bot AI\).

Do đó \(AK = {{AI.A{\rm{D}}} \over {DI}} = {{{{a\sqrt 2 } \over 2}.a} \over {{{a\sqrt 6 } \over 2}}} = {a \over {\sqrt 3 }}\).

Vậy khoảng cách giữa AC và SD bằng \({{a\sqrt 3 } \over 3}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 5: Khoảng cách

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài