Câu 67 trang 127 Sách bài tập Hình học 11 Nâng cao>
Giải bài tập Câu 67 trang 127 Sách bài tập Hình học 11 Nâng cao
Đề bài
Cho ABC là tam giác đều cạnh a. Trên đường thẳng At vuông góc với mp(ABC) lấy điểm S với AS = b.
a) Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, b.
b) Hz là đường thẳng đi qua trực tâm H của tam giác SBC và vuông góc với mp(SBC). Chứng minh rằng khi S di động trên At thì đường thẳng Hz luôn đi qua một điểm cố định.
Lời giải chi tiết
a) Gọi A1 là trung điểm của BC thì \(BC \bot mp\left( {SA{A_1}} \right)\), từ đó \(\left( {SA{A_1}} \right) \bot \left( {SBC} \right)\).
Kẻ đường cao AI của tam giác SAA1 thì \(AI \bot \left( {SBC} \right)\). Từ đó, khoảng cách từ A đến mp(SBC) bằng AI.
Ta có \(AI = {{AS.A{A_1}} \over {S{A_1}}} = {{b.{{a\sqrt 3 } \over 2}} \over {\sqrt {{b^2} + {{3{a^2}} \over 4}} }}\).
Vậy \(AI = {{ab\sqrt 3 } \over {\sqrt {3{{\rm{a}}^2} + 4{b^2}} }}\).
b) Vì H là trực tâm tam giác SBC nên H thuộc SA1. Do \(\left( {SA{A_1}} \right) \bot \left( {SBC} \right)\) và \(H{\rm{z}} \bot \left( {SBC} \right)\) nên Hz nằm trong mp(SAA1). Gọi K là giao điểm của Hz và AA1, ta có \(KH \bot \left( {SBC} \right),BH \bot SC\) nên \(KB \bot SC\) (định lí ba đường vuông góc).
Mặt khác \(SA \bot \left( {ABC} \right),BK \bot SC\) nên \(BK \bot AC\) (định lí ba đường vuông góc). Như vậy K là trực tâm của tam giác ABC.
Vậy khi S di động trên đường thẳng At vuông góc với mp(ABC) thì đường thẳng Hz đi qua điểm cố định là trực tâm K của tam giác ABC.
Loigiaihay.com
- Câu 68 trang 127 Sách bài tập Hình học 11 Nâng cao
- Câu 69 trang 127 Sách bài tập Hình học 11 Nâng cao
- Câu 70 trang 127 Sách bài tập Hình học 11 Nâng cao
- Câu 66 trang 127 Sách bài tập Hình học 11 Nâng cao
- Câu 65 trang 127 Sách bài tập Hình học 11 Nâng cao
>> Xem thêm
Các bài khác cùng chuyên mục