Câu 58 trang 126 Sách bài tập Hình học 11 Nâng cao


Giải bài tập Câu 58 trang 126 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hình chóp A.ABCD có cạnh SA = x, tất cả các cạnh còn lại có độ dài bằng a.

a) Chứng minh rằng SAC là tam giác vuông.

b) Tính đường cao SH của hình chóp đã cho.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Gọi O là giao điểm của AC và BD thì \(OA = OC,OB = O{\rm{D}}\).

Vì \(SB = S{\rm{D}} = CB = C{\rm{D}}\) nên \(\Delta BC{\rm{D}} = \Delta B{\rm{SD}}\), từ đó \(SO = OC = OA\).

Vậy SAC là tam giác vuông tại S.

b) \(\left. \matrix{  AC \bot B{\rm{D}} \hfill \cr  {\rm{SO}} \bot {\rm{BD}} \hfill \cr}  \right\} \Rightarrow B{\rm{D}} \bot \left( {SAC} \right)\),

từ đó \(\left( {SAC} \right) \bot \left( {ABC{\rm{D}}} \right)\).

Vậy nếu kẻ đường cao SH của tam giác SAC thì \(SH \bot \left( {ABC{\rm{D}}} \right)\),

do đó \(d\left( {S;mp\left( {ABC{\rm{D}}} \right)} \right) = SH = {{SA.SC} \over {AC}} = {{a.x} \over {\sqrt {{a^2} + {x^2}} }}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí