Câu 3.29 trang 145 sách bài tập Giải tích 12 Nâng cao


Đề bài

Giả sử M và m theo thứ tự là gái trị lớn nhấ và nhỏ nhất của hàm số f trên đoạn [a;b]. Chứng minh rằng:

         \(m\left( {b - a} \right) \le \int\limits_a^b {f\left( x \right)dx \ge M\left( {b - a} \right)} \)

Lời giải chi tiết

Ta có: \(m \le f\left( x \right) \le M\forall x \in \left[ {a;b} \right]\). Áp dụng bài toán 13.b) (SGK trang 153) ta suy ra: \(m\left( {a - b} \right) = \int\limits_a^b {mdx}  \le \int\limits_a^b {f\left( x \right)dx}  \le \int\limits_a^b {Mdx}  = M\left( {b - a} \right)\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3. Tích phân

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.