Câu 2.123 trang 90 sách bài tập Giải tích 12 Nâng cao


Giải các bất phương trình

Lựa chọn câu để xem lời giải nhanh hơn

Giải các bất phương trình 

LG a

\({9^x} < {3^{x + 1}} + 4\)

Lời giải chi tiết:

Đặt \({3^x} = t\left( {t > 0} \right)\), ta có \({t^2} < 3t + 4\)

Vậy \(x > {\log _3}4\)

LG b

\({3^x} - {3^{ - x + 2}} + 8 > 0\)

Lời giải chi tiết:

\(x > 0\)                  

Hướng dẫn: Đặt \({3^x} = t\left( {t > 0} \right)\), ta có         \({t^2} + 8t - 9 > 0\)

LG c

\({x^{{{\log }_3}x + 4}} < 243\)

Lời giải chi tiết:

\({1 \over {243}} < x < 3\)              

Hướng dẫn: Lôgarit cơ số 3 cả hai vế của bất phương trình, ta có

  \(\left( {{{\log }_3}x + 4} \right){\log _3}x < 5\)

Đặt \({\log _3}x = t\) , ta được \({t^2} + 4t - 5 < 0\) hay \( - 5 < t < 1\)

Do \( - 5 < {\log _3}x < 1\). Suy ra \({3^{ - 5}} < x < 3\)

LG d

\(\log _2^2x + {\log _2}4x - 4 \ge 0\)

Lời giải chi tiết:

\(x \le {1 \over 4}\) hoặc \(x \ge 2\)

Hướng dẫn: Đặt \({\log _2}x = t\) , ta có \({t^2} + t - 2 \ge 0\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài