Câu 2.114 trang 88 sách bài tập Giải tích 12 Nâng cao


Giải các hệ phương trình sau

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình sau:

LG a

\(\left\{ \matrix{{3^x} + {3^y} = 4 \hfill \cr x + y = 1 \hfill \cr}  \right.\)

Lời giải chi tiết:

Cách 1. Rút y từ phương trình thứ 2, thế vào phương trình thứ nhất thì được \({3^x} + {3^{1 - x}} = 4\). Sau đó đặt \(t = {3^x}(t > 0)\)

Cách 2. Viết phương trình thứ hai thành \({3^{x + y}} = 3\) hay \({3^x}{.3^y} = 3\). Sau đó đặt \(u = {3^x},v = {3^y}(u > 0,v > 0)\) dẫn đến hệ \(\left\{ \matrix{ u + v = 4 \hfill \cr uv = 3 \hfill \cr}  \right.\)

Vậy \(\left( {x;y} \right)\) là \(\left( {1;0} \right),\left( {0;1} \right)\)

LG b

\(\left\{ \matrix{{3^{ - x}} + {3^{ - y}} = {4 \over 9} \hfill \cr x + y = 3 \hfill \cr}  \right.\)

Lời giải chi tiết:

\(\left( {x;y} \right)\) là \(\left( {1;2} \right),\left( {2;1} \right)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài