Bài 1.60 trang 18 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.60 trang 18 sách bài tập Đại số và Giải tích 11 Nâng cao. Chứng minh rằng...

Đề bài

Chứng minh rằng

\({\cos ^2}(x - a) + {\sin ^2}(x - b) \)\(- 2\cos (x - a)\sin (x - b)\sin (a - b) \)\(= {\cos ^2}(a - b)\)

Lời giải chi tiết

Ta có:

\(\eqalign{
& {\cos ^2}(x - a) + {\sin ^2}(x - b) \cr&= {{1 + \cos 2\left( {x - a} \right)} \over 2} + {{1 - \cos 2\left( {x - b} \right)} \over 2} \cr 
& = 1 + {1 \over 2}\left[ {\cos 2\left( {x - a} \right) - \cos 2\left( {x - b} \right)} \right] \cr& = 1 + \frac{1}{2}.\left( { - 2} \right)\sin \left( {2x - a - b} \right)\sin \left( {b - a} \right) \cr&= 1 - \sin \left( {2x - a - b} \right)\sin \left( {b - a} \right)\cr&= 1 + \sin \left( {2x - a - b} \right)\sin \left( {a - b} \right) \cr} \)

Do đó

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K9 Ôn Thi ĐGNL & ĐGTD Miễn Phí