Bài 1.57 trang 18 SBT Đại số và Giải tích 11 Nâng cao


Giải bài 1.57 trang 18 sách bài tập Đại số và Giải tích 11 Nâng cao. Chọn đáp án đúng...

Đề bài

Trong khoảng \(\left( {0;{\pi  \over 2}} \right),\) phương trình \({\sin ^2}4x + 3\sin 4x\cos 4x - 4{\cos ^2}4x = 0\) có:

(A) 1 nghiệm                  (B) 2 nghiệm

(C) 3 nghiệm                 (D) 4 nghiệm

Lời giải chi tiết

Chọn phương án (D)

Đặt \(y = 4x\) ta có \(0 < x < {\pi  \over 2} \Rightarrow 0 < y < 2\pi .\)

Phương trình đã cho trở thành:

\({\sin ^2}y + 3\sin y\cos y - 4{\cos ^2}y = 0\)

Nếu \(\cos y = 0 \Leftrightarrow y = \frac{\pi }{2} + k\pi \) thì \({\sin ^2}y = 1\), thay vào phương trình trên ta được:

\(1 + 3.0 - 4.0 = 1 \ne 0\) nên \(y = \frac{\pi }{2} + k\pi \) không thỏa mãn phương trình.

Chia cả hai vế của phương trình cho \({\cos ^2}y \ne 0\) ta được: 

\({\tan ^2}y + 3\tan y - 4 = 0\)

\( \Leftrightarrow \)\(\left[ \matrix{
\tan y = 1 \hfill \cr 
\tan y = - 4 \hfill \cr} \right.\)

Trong khoảng \(\left( {0;2\pi } \right),\) mỗi phương trình \(\tan y = 1\) và \(\tan y =  - 4\) đều có hai nghiệm.

Vậy phương trình đã cho có 4 nghiệm trong khoảng đang xét.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài