Bài 8 trang 28 SGK Hình học 12


Đề bài

Thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng \(a\) là:

(A) \(\displaystyle {{\sqrt 2 } \over 3}{a^3}\)          (B) \(\displaystyle {{\sqrt 2 } \over 4}{a^3}\)

(C) \(\displaystyle {{\sqrt 3 } \over 2}{a^3}\)           (D) \(\displaystyle {{\sqrt 3 } \over 4}{a^3}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Khối lăng trụ tam giác đều là khối lăng trụ đứng có đáy là tam giác đều.

Lời giải chi tiết

Đáy của khối lăng trụ đều là tam giác đều cạnh \(a\) nên ta có diện tích đáy: \[S = {{{a^2}\sqrt 3 } \over 4}\]

Chiều cao của khối lăng trụ tam giác đều \(h=a\).

Vậy thể tích là: \[V = S.h = \frac{{{a^2}\sqrt 3 }}{4}.a = \frac{{{a^3}\sqrt 3 }}{4}\]

Chọn (D).

loigiaihay.com


Bình chọn:
4 trên 4 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.