Bài 4 trang 56 SGK Giải tích 12

Bình chọn:
4.7 trên 20 phiếu

Giải bài 4 trang 56 SGK Giải tích 12. Cho a, b là những số thực dương. Rút gọn các biểu thức sau:

Đề bài

Cho \(a, b\) là những số thực dương. Rút gọn các biểu thức sau:

a) \({{{a^{{4 \over 3}}}\left( {{a^{{{ - 1} \over 3}}} + {a^{{2 \over 3}}}} \right)} \over {{a^{{1 \over 4}}}\left( {{a^{{3 \over 4}}} + {a^{{{ - 1} \over 4}}}} \right)}}\) ;                   b) \({{{b^{{1 \over 5}}}\left( {\root 5 \of {{b^4}}  - \root 5 \of {{b^{ - 1}}} } \right)} \over {{b^{{2 \over 3}}}\left( {\root 3 \of b  - \root 3 \of {{b^{ - 2}}} } \right)}};\)       

c) \({{{a^{{1 \over 3}}}{b^{{{ - 1} \over 3}}} - {a^{{{ - 1} \over 3}}}{b^{{1 \over 3}}}} \over {\root 3 \of {{a^2}}  - \root 3 \of {{b^2}} }}\);                    d) \({{{a^{{1 \over 3}}}\sqrt b  + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a  + \root 6 \of b }}\)

Phương pháp giải - Xem chi tiết

+) Sử dụng các công thức lũy thừa cơ bản và các hằng đẳng thức để rút gọn các biểu thức.

Lời giải chi tiết

a)  \({{{a^{{4 \over 3}}}\left( {{a^{{{ - 1} \over 3}}} + {a^{{2 \over 3}}}} \right)} \over {{a^{{1 \over 4}}}\left( {{a^{{3 \over 4}}} + {a^{{{ - 1} \over 4}}}} \right)}}\) \( = {{{a^{{4 \over 3}}}{a^{{{ - 1} \over 3}}} + {a^{{4 \over 3}}}{a^{{2 \over 3}}}} \over {{a^{{1 \over 4}}}{a^{{3 \over 4}}} + {a^{{1 \over 4}}}{a^{{{ - 1} \over 4}}}}}\)

\( = {{{a^{{4 \over 3} - {1 \over 3}}} + {a^{{4 \over 3} + {2 \over 3}}}} \over {{a^{{1 \over 4} + {3 \over 4}}} + {a^{{1 \over 4} + {{ - 1} \over 4}}}}} = {{{a^1} + {a^2}} \over {{a^1} + {a^0}}} = {{a\left( {1 + a} \right)} \over {a + 1}} = a\)  (Với \(a>0\)).

b) \({{{b^{{1 \over 5}}}\left( {\root 5 \of {{b^4}}  - \root 5 \of {{b^{ - 1}}} } \right)} \over {{b^{{2 \over 3}}}\left( {\root 3 \of b  - \root 3 \of {{b^{ - 2}}} } \right)}} = {{{b^{{1 \over 5}}}\left( {{b^{{4 \over 5}}} - {b^{{{ - 1} \over 5}}}} \right)} \over {{b^{{2 \over 3}}}\left( {{b^{{1 \over 3}}} - {b^{{{ - 2} \over 3}}}} \right)}}\)

\(= {{{b^{{1 \over 5} - {4 \over 5}}} - {b^{{1 \over 5} - {1 \over 5}}}} \over {{b^{{2 \over 3} + {1 \over 3}}} - {b^{{2 \over 3} - {2 \over 3}}}}} = {{b - 1} \over {b - 1}} = 1\) ( Với điều kiện \(b>0; \, b \neq 1\)).

c) \({{{a^{{1 \over 3}}}{b^{{{ - 1} \over 3}}} - {a^{{{ - 1} \over 3}}}{b^{{1 \over 3}}}} \over {\root 3 \of {{a^2}}  - \root 3 \of {{b^2}} }}\) \(= {{{a^{{{ - 1} \over 3}}}{b^{{{ - 1} \over 3}}}\left( {{a^{{2 \over 3}}} - {b^{{2 \over 3}}}} \right)} \over {{a^{{2 \over 3}}} - {b^{{2 \over 3}}}}}\)

\( = {a^{{{ - 1} \over 3}}}{b^{{{ - 1} \over 3}}} = {1 \over {{a^{{1 \over 3}}}{b^{{1 \over 3}}}}} = {1 \over {\root 3 \of {ab} }}\) ( với điều kiện \(a \neq b; a, b >0\).).

d) \({{{a^{{1 \over 3}}}\sqrt b  + {b^{{1 \over 3}}}\sqrt a } \over {\root 6 \of a  + \root 6 \of b }}\) \(= {{{a^{{1 \over 3}}}{b^{{1 \over 2}}} + {b^{{1 \over 3}}}{a^{{1 \over 2}}}} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}}\)

\(= {{{a^{{1 \over 3}}}{b^{{1 \over 2}}} + {b^{{1 \over 3}}}{a^{{1 \over 2}}}} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}} = {{{a^{{2 \over 6}}}{b^{{3 \over 6}}} + {b^{{2 \over 6}}}{a^{{3 \over 6}}}} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}}\)

\(= {{{a^{{2 \over 6}}}{b^{{2 \over 6}}}\left( {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}} \right)} \over {{a^{{1 \over 6}}} + {b^{{1 \over 6}}}}} = {a^{{2 \over 6}}}{b^{{2 \over 6}}} = {a^{{1 \over 3}}}{b^{{1 \over 3}}} = \root 3 \of {ab} .\) (Với \(a, b > 0\)).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan