Bài 2 trang 55 SGK Giải tích 12

Bình chọn:
3.9 trên 13 phiếu

Giải bài 2 trang 55 SGK Giải tích 12. Cho a, b là những số thực dương. Viết các biểu thức dưới dạng lũy thừa với số mũ hữu tỉ:

Đề bài

Cho \(a, b\) là những số thực dương. Viết các biểu thức dưới dạng lũy thừa với số mũ hữu tỉ: 

a) \(a^{\frac{1}{3}}\). \(\sqrt{a}\);

b) \(b^{\frac{1}{2}}.b ^{\frac{1}{3}}. \sqrt[6]{b}\);

c) \(a^{\frac{4}{3}}\) : \(\sqrt[3]{a}\);

d) \(\sqrt[3]{b}\) : \(b^{\frac{1}{6}}\) ;

Phương pháp giải - Xem chi tiết

Sử dụng các công thức của hàm lũy thừa để tính: \(a^n.b^n=(ab)^n; \, \, a^m.a^n=a^{m+n}; (a^m)^n=a^{mn}; \, \, \frac{1}{a}=a^{-1};\\ \sqrt[n]{{{a^m}}} = {a^{\frac{m}{n}}};\;\;{a^m}:{a^n} = {a^{m - n}}.\)

Lời giải chi tiết

a)\(a^{\frac{1}{3}}\). \(\sqrt{a} = a^{\frac{1}{3}}. a^{\frac{1}{2}}=a^{\frac{1}{3}+\frac{1}{2}} = a^{\frac{5}{6}}\).

b) \(b^{\frac{1}{2}}.b ^{\frac{1}{3}}. \sqrt[6]{b} = b^{\frac{1}{2}}.b ^{\frac{1}{3}}. b^{\frac{1}{6}}= b^{\frac{1}{2}+ \frac{1}{3}+ \frac{1}{6}}= b\) .

c) \(a^{\frac{4}{3}}\) : \(\sqrt[3]{a}= a^{\frac{4}{3}}: a^{\frac{1}{3}}=a^{\frac{4}{3}-\frac{1}{3}} = a.\)

d) \(\sqrt[3]{b}\) : \(b^{\frac{1}{6}} = b^{\frac{2}{6}} : b^{\frac{1}{6}} =b^{\frac{2}{6}-\frac{1}{6}}= b^{\frac{1}{6}}\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

Các bài liên quan: - Bài 1. Lũy thừa

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.