Bài 3 trang 56 SGK Giải tích 12

Bình chọn:
3.7 trên 3 phiếu

Giải bài 3 trang 56 SGK Giải tích 12. Viết các số sau theo thứ tự tăng dần

Đề bài

Viết các số sau theo thứ tự tăng dần:

a) \(1^{3,75}\) ; \(2^{-1}\) ; \((\frac{1}{2})^{-3}\)

b) \(98^{0}\) ; \(\left ( \frac{3}{7} \right )^{-1}\) ; \(32^{\frac{1}{5}}\).

Phương pháp giải - Xem chi tiết

+) Sử dụng công thức đổi cơ số:  \({\left( {\frac{1}{a}} \right)^m} = {a^{ - m}}\).

+) Sử dụng công thức:  \({\left( {{a^m}} \right)^n} = {a^{m.n}}.\)

+) Quy ước:  \({1^m} = 1.\)

Lời giải chi tiết

 a) Sử dụng tính chất: Trong các lũy thừa cùng cơ số lớn hơn \(1\), lũy thừa nào có số mũ lớn hơn thì lũy thừa đó lớn hơn.

b) Sử dụng các công thức lũy thừa, rút gọn các lũy thừa, đưa các lũy thừa đó về dạng một số thực sau đó so sánh các số đó với nhau.
a) \(1^{3,75}\) ; \(2^{-1}\) ; \((\frac{1}{2})^{-3}\)
Ta có: \({1^{3,75}} = 1 = {2^0};\;\;{\left( {\frac{1}{2}} \right)^{ - 3}} = {2^3}.\)
Có: \( - 1 < 0 < 3 \Rightarrow {2^{ - 1}} < {2^0} < {2^3} \Rightarrow {2^{ - 1}} < {1^{3,75}} < {\left( {\frac{1}{2}} \right)^{ - 3}}.\)
Vậy ta sắp xếp được: \({2^{ - 1}};\;1,375;\;\;{\left( {\frac{1}{2}} \right)^{ - 3}}.\)
b) \({98^0};\;\;{\left( {\frac{3}{7}} \right)^{ - 1}};\;\;{32^{\frac{1}{5}}}.\)
Ta có: \({98^0} = 1;\;\;{\left( {\frac{3}{7}} \right)^{ - 1}} = \frac{7}{3} \approx 2,\left( {33} \right);\;\;{32^{\frac{1}{5}}} = {\left( {{2^5}} \right)^{\frac{1}{5}}} = 2.\)
Có: \(1 < 2 < \frac{7}{3} \Rightarrow {98^0} < {32^{\frac{1}{5}}} < {\left( {\frac{3}{7}} \right)^{ - 1}}.\)
Vậy ta sắp xếp được: \({98^0};\;\;{32^{\frac{1}{5}}};\;{\left( {\frac{3}{7}} \right)^{ - 1}}.\)

 

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan