Bài 19 trang 8 SBT Hình học 12 Nâng cao>
Giải bài 19 trang 8 sách bài tập Hình học 12 Nâng cao. Cho hai hình tứ diện ABCD ...
Đề bài
Cho hai hình tứ diện ABCD và A’B’C’D’ có các cạnh tương ứng song song: \(AB//A'B',AC//A'C',AD//A'D',\) \(CB//C'B',BD//B'D',DC//D'C'.\) Chứng minh rằng hai tứ diện nói trên đồng dạng.
Lời giải chi tiết
Vì \(AB//A'B'\) nên có số \(k \ne 0\) sao cho \(\overrightarrow {AB} = k\overrightarrow {A'B'} \). Ta chứng minh rằng khi đó, ta cũng có \(\overrightarrow {AC} = k\overrightarrow {A'C'} ,\overrightarrow {AD} = k\overrightarrow {A'D'} ,\overrightarrow {CB} = k\overrightarrow {C'B'} ,\)
\(BD = k\overrightarrow {B'D'} ,\overrightarrow {DC} = k\overrightarrow {D'C'} .\)
Thật vậy, hai tam giác ABC và A’B’C’ có các cạnh tương ứng song song nên ta phải có các số l và m sao cho \(\overrightarrow {AC} = l\overrightarrow {A'C'} \) và \(\overrightarrow {CB} = m\overrightarrow {C'B'} \). Khi đó :
\(\eqalign{ & \overrightarrow {AB} = k\overrightarrow {A'B'} \Leftrightarrow \overrightarrow {AC} - \overrightarrow {BC} = k\left( {\overrightarrow {A'C'} - \overrightarrow {B'C'} } \right) \cr & \Leftrightarrow l\overrightarrow {A'C'} - m\overrightarrow {B'C'} = k\overrightarrow {A'C'} - k\overrightarrow {B'C'} \cr & \Leftrightarrow \left( {l - k} \right)\overrightarrow {A'C'} = \left( {m - k} \right)\overrightarrow {B'C'} . \cr} \)
Vì hai vectơ \(\overrightarrow {A'C'} \) và \(\overrightarrow {B'C'} \) không cùng phương nên đẳng thức trên xảy ra khi và chỉ khi \(l - k = m - k = 0\), tức là l=m=k, vậy \(\overrightarrow {AC} = k\overrightarrow {A'C'} \) và \(\overrightarrow {BC} = k\overrightarrow {B'C'} \).
Các đẳng thức còn lại được chứng minh tương tự.
Xét trường hợp \(k = 1\). Khi đó \(\overrightarrow {AB} = \overrightarrow {A'B'} ,\overrightarrow {BC} = \overrightarrow {B'C'} ,...\)nên
\(\overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow {CC'} = ...\)
Suy ra phép tịnh tiến theo vectơ \(\overrightarrow v = \overrightarrow {AA'} \) biến tứ diện ABCD thành tứ diện A’B’C’D’.
Nếu \(k \ne 1\) thì hai đường thẳng AA’ và BB’ cắt nhau tại một điểm O nào đó.
Khi đó, rõ ràng phép vị tự V tâm O tỉ số \({1 \over k}\) biến tứ diện ABCD thành tứ diện A’B’C’D’.
Vậy trong cả hai trường hợp nói trên, hai tứ diện ABCD và A’B’C’D’ đồng dạng.
Loigiaihay.com
- Bài 20 trang 8 SBT Hình học 12 Nâng cao
- Bài 21 trang 8 SBT Hình học 12 Nâng cao
- Bài 18 trang 8 SBT Hình học 12 Nâng cao
- Bài 17 trang 8 SBT Hình học 12 Nâng cao
- Bài 16 trang 8 SBT Hình học 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao