 Giải SBT toán hình học và giải tích 12 nâng cao
                                                
                            Giải SBT toán hình học và giải tích 12 nâng cao
                         Bài 3: Phép vị tự và sự đồng dạng của các khối đa diện
                                                        Bài 3: Phép vị tự và sự đồng dạng của các khối đa diện
                                                    Bài 19 trang 8 SBT Hình học 12 Nâng cao>
Giải bài 19 trang 8 sách bài tập Hình học 12 Nâng cao. Cho hai hình tứ diện ABCD ...
Đề bài
Cho hai hình tứ diện ABCD và A’B’C’D’ có các cạnh tương ứng song song: \(AB//A'B',AC//A'C',AD//A'D',\) \(CB//C'B',BD//B'D',DC//D'C'.\) Chứng minh rằng hai tứ diện nói trên đồng dạng.
Lời giải chi tiết
Vì \(AB//A'B'\) nên có số \(k \ne 0\) sao cho \(\overrightarrow {AB} = k\overrightarrow {A'B'} \). Ta chứng minh rằng khi đó, ta cũng có \(\overrightarrow {AC} = k\overrightarrow {A'C'} ,\overrightarrow {AD} = k\overrightarrow {A'D'} ,\overrightarrow {CB} = k\overrightarrow {C'B'} ,\)
\(BD = k\overrightarrow {B'D'} ,\overrightarrow {DC} = k\overrightarrow {D'C'} .\)
Thật vậy, hai tam giác ABC và A’B’C’ có các cạnh tương ứng song song nên ta phải có các số l và m sao cho \(\overrightarrow {AC} = l\overrightarrow {A'C'} \) và \(\overrightarrow {CB} = m\overrightarrow {C'B'} \). Khi đó :
\(\eqalign{ & \overrightarrow {AB} = k\overrightarrow {A'B'} \Leftrightarrow \overrightarrow {AC} - \overrightarrow {BC} = k\left( {\overrightarrow {A'C'} - \overrightarrow {B'C'} } \right) \cr & \Leftrightarrow l\overrightarrow {A'C'} - m\overrightarrow {B'C'} = k\overrightarrow {A'C'} - k\overrightarrow {B'C'} \cr & \Leftrightarrow \left( {l - k} \right)\overrightarrow {A'C'} = \left( {m - k} \right)\overrightarrow {B'C'} . \cr} \)
Vì hai vectơ \(\overrightarrow {A'C'} \) và \(\overrightarrow {B'C'} \) không cùng phương nên đẳng thức trên xảy ra khi và chỉ khi \(l - k = m - k = 0\), tức là l=m=k, vậy \(\overrightarrow {AC} = k\overrightarrow {A'C'} \) và \(\overrightarrow {BC} = k\overrightarrow {B'C'} \).
Các đẳng thức còn lại được chứng minh tương tự.
Xét trường hợp \(k = 1\). Khi đó \(\overrightarrow {AB} = \overrightarrow {A'B'} ,\overrightarrow {BC} = \overrightarrow {B'C'} ,...\)nên
\(\overrightarrow {AA'} = \overrightarrow {BB'} = \overrightarrow {CC'} = ...\)
Suy ra phép tịnh tiến theo vectơ \(\overrightarrow v = \overrightarrow {AA'} \) biến tứ diện ABCD thành tứ diện A’B’C’D’.
Nếu \(k \ne 1\) thì hai đường thẳng AA’ và BB’ cắt nhau tại một điểm O nào đó.
Khi đó, rõ ràng phép vị tự V tâm O tỉ số \({1 \over k}\) biến tứ diện ABCD thành tứ diện A’B’C’D’.
Vậy trong cả hai trường hợp nói trên, hai tứ diện ABCD và A’B’C’D’ đồng dạng.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            