Phần câu hỏi bài 7 trang 31 Vở bài tập toán 9 tập 1


Giải phần câu hỏi bài 7 trang 31 VBT toán 9 tập 1. Với x < 0, y < 0, biểu thức...

Lựa chọn câu để xem lời giải nhanh hơn

Câu 13

Với \(x < 0, y < 0,\) biểu thức \(\sqrt {\dfrac{{{x^3}}}{y}} \) được biến đổi thành

(A) \(\dfrac{{{x^2}}}{y}\sqrt {xy} \)                          (B) \( - \dfrac{{{x^2}}}{y}\sqrt {xy} \)

(C) \(\dfrac{x}{y}\sqrt {xy} \)                                    (D) \( - \dfrac{x}{y}\sqrt {xy} \)

Phương pháp giải:

Áp dụng kiến thức: Với các biểu thức \(A, B\) mà \(A.\,B \ge 0,\,\,B \ne 0\) , ta có:

\(\sqrt {\dfrac{A}{B}}  = \dfrac{{\sqrt {AB} }}{{\left| B \right|}}\)

Lời giải chi tiết:

\(\sqrt {\dfrac{{{x^3}}}{y}} \)\( = \dfrac{{\sqrt {{x^3}y} }}{{\left| y \right|}}\) \( = \dfrac{{\left| x \right|\sqrt {xy} }}{{\left| y \right|}} = \dfrac{{x\sqrt {xy} }}{y}\)

Đáp án cần chọn là C.

Câu 14

Với \(a > 0,\) biểu thức \(\dfrac{{2x}}{{\sqrt {2a} }}\) được biến đổi thành

(A) \(\dfrac{{x\sqrt a }}{a}\)                          (B) \(\dfrac{{\sqrt 2 .x\sqrt a }}{a}\)

(C) \(\dfrac{{2\sqrt 2 .x\sqrt a }}{a}\)                                    (D) \(\dfrac{{\sqrt 2 .x\sqrt a }}{{2a}}\)

Phương pháp giải:

Trục căn thức ở mẫu: Với các biểu thức \(A, B\) mà \(B > 0,\) ta có:

\(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\)

Lời giải chi tiết:

\(\dfrac{{2x}}{{\sqrt {2a} }}\)\( = \dfrac{{2x\sqrt {2a} }}{{2\left| a \right|}}\)

Vì \(a > 0\) nên \(\left| a \right| = a\)

Vậy \(\dfrac{{2x\sqrt {2a} }}{{2\left| a \right|}} = \dfrac{{x\sqrt {2a} }}{a} = \dfrac{{\sqrt 2 x\sqrt a }}{a}\)

Đáp án cần chọn là B.

Câu 15

Giá trị của \(\dfrac{2}{{\sqrt 3  + 1}}\) bằng

(A) \(2\left( {\sqrt 3  + 1} \right)\)   

(B) \(2\left( {\sqrt 3  - 1} \right)\)

(C) \(\sqrt 3  + 1\)

(D) \(\sqrt 3  - 1\)

Phương pháp giải:

Áp dụng trục căn thức ở mẫu: Với các biểu thức A, B, C mà \(A \ge 0\) và \(A \ne {B^2}\), ta có:

\(\dfrac{C}{{\sqrt A  \pm B}} = \dfrac{{C\left( {\sqrt A  \mp B} \right)}}{{A - {B^2}}}\)

Lời giải chi tiết:

\(\dfrac{2}{{\sqrt 3  + 1}} = \dfrac{{2.\left( {\sqrt 3  - 1} \right)}}{{3 - 1}}\)\( = \sqrt 3  - 1\)

Đáp án cần chọn là D.

Câu 16

Giá trị của \(\dfrac{1}{{\sqrt 3  - \sqrt 2 }} - \dfrac{1}{{\sqrt 3  + \sqrt 2 }}\) bằng

(A) \( - 2\sqrt 2 \)                                (B) \( - 2\sqrt 3 \)

(C) \(2\sqrt 2 \)                                    (D) \(2\sqrt 3 \) 

Phương pháp giải:

Áp dụng trục căn thức ở mẫu: Với các biểu thức \(A, B, C\) mà \(A \ge 0\) và \(A \ne {B^2}\), ta có:

\(\dfrac{C}{{\sqrt A  \pm B}} = \dfrac{{C\left( {\sqrt A  \mp B} \right)}}{{A - {B^2}}}\)

Từ đó biến đổi các căn thức rồi thực hiện phép trừ đa thức. 

Lời giải chi tiết:

\(\dfrac{1}{{\sqrt 3  - \sqrt 2 }} - \dfrac{1}{{\sqrt 3  + \sqrt 2 }}\)\( = \dfrac{{\sqrt 3  + \sqrt 2 }}{{3 - 2}} - \dfrac{{\sqrt 3  - \sqrt 2 }}{{3 - 2}}\) \( = 2\sqrt 2 \)

Đáp án cần chọn là C.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài