Bài 33 trang 34 Vở bài tập toán 9 tập 1


Đề bài

Rút gọn các biểu thức sau (với giả thiết các biểu thức đều có nghĩa)

a) \(\sqrt {18{{\left( {\sqrt 2  - \sqrt 3 } \right)}^2}} \)  

b) \(ab\sqrt {1 + \dfrac{1}{{{a^2}{b^2}}}} \)

c) \(\sqrt {\dfrac{a}{{{b^3}}} + \dfrac{a}{{{b^4}}}} \)   

d) \(\dfrac{{a + \sqrt {ab} }}{{\sqrt a  + \sqrt b }}\)

Phương pháp giải - Xem chi tiết

- Thực hiện các phép tính trong căn

- Áp dụng các phép biến đổi biểu thức chứa căn đã học để thu gọn biểu thức.

Chú ý: \(\sqrt {A^2}=|A|\)

Lời giải chi tiết

a) \(\sqrt {18{{\left( {\sqrt 2  - \sqrt 3 } \right)}^2}}  \)

\(= \sqrt {18} \sqrt {{{\left( {\sqrt 2  - \sqrt 3 } \right)}^2}}  \)

\(= \sqrt {{3^2}.2} \left| {\sqrt 2  - \sqrt 3 } \right|\)

\( = 3\sqrt 2 \left( {\sqrt 3  - \sqrt 2 } \right)\)

b) \(ab\sqrt {1 + \dfrac{1}{{{a^2}{b^2}}}} \)\( = ab\sqrt {\dfrac{{{a^2}{b^2} + 1}}{{{a^2}{b^2}}}} \)

\( = ab\dfrac{{\sqrt {{a^2}{b^2} + 1} }}{{\left| {ab} \right|}}\)

Nếu a và b cùng dấu thì \(\left| {ab} \right| = ab\) , rút gọn tiếp được \(\sqrt {{a^2}{b^2} + 1} \)

Nếu a và b trái dấu thì \(\left| {ab} \right| =  - ab\), rút gọn tiếp được \( - \sqrt {{a^2}{b^2} + 1} \)

c) \(\sqrt {\dfrac{a}{{{b^3}}} + \dfrac{a}{{{b^4}}}} \)\( = \sqrt {\dfrac{{ab + a}}{{{b^4}}}}  = \dfrac{{\sqrt {ab + a} }}{{\sqrt {{{\left( {{b^2}} \right)}^2}} }} \)\(= \dfrac{{\sqrt {ab + a} }}{{{b^2}}}\)

d) \(\dfrac{{a + \sqrt {ab} }}{{\sqrt a  + \sqrt b }}\)

\( = \dfrac{{\left( {a + \sqrt {ab} } \right)\left( {\sqrt a  - \sqrt b } \right)}}{{\left( {\sqrt a  + \sqrt b } \right)\left( {\sqrt a  - \sqrt b } \right)}}\)

\( = \dfrac{{\left( {{{\sqrt a }^2} + \sqrt a \sqrt b } \right)\left( {\sqrt a  - \sqrt b } \right)}}{{\left( {\sqrt a  + \sqrt b } \right)\left( {\sqrt a  - \sqrt b } \right)}}\)

\( = \dfrac{{\sqrt a \left( {\sqrt a  + \sqrt b } \right)\left( {\sqrt a  - \sqrt b } \right)}}{{\left( {\sqrt a  + \sqrt b } \right)\left( {\sqrt a  - \sqrt b } \right)}} = \sqrt a \)

Lưu ý : Câu d) có thể giải cách khác :

\(\dfrac{{a + \sqrt {ab} }}{{\sqrt a  + \sqrt b }}\)\( = \dfrac{{{{\left( {\sqrt a } \right)}^2} + \sqrt a \sqrt b }}{{\sqrt a  + \sqrt b }} \)\(= \dfrac{{\sqrt a \left( {\sqrt a  + \sqrt b } \right)}}{{\sqrt a  + \sqrt b }} = \sqrt a \)

Loigiaihay.com


Bình chọn:
3.7 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.