Bài 4.46 trang 209 SBT giải tích 12


Giải bài 4.46 trang 209 sách bài tập giải tích 12.Số nào sau đây là số thuần ảo?...

Đề bài

Số nào sau đây là số thuần ảo?

A. \(\dfrac{{{{\left( {1 + i} \right)}^5}}}{{{{\left( {1 - i} \right)}^3}}}\)

B. \({\left( {1 + i} \right)^5} + {\left( {1 - i} \right)^5}\)

C. \(\dfrac{{1 + i}}{{1 - i}} + \dfrac{{1 - i}}{{1 + i}}\)

D. \(\dfrac{{3 + 2i}}{{2 - i}} - \dfrac{{3 - 2i}}{{2 + i}}\)

Phương pháp giải - Xem chi tiết

Tính các số phức ở mỗi đáp án và kiểm tra số phức thuần ảo.

Lời giải chi tiết

Đáp án A:

\(\dfrac{{{{\left( {1 + i} \right)}^5}}}{{{{\left( {1 - i} \right)}^3}}}\)\( = \dfrac{{{{\left( {1 + i} \right)}^4}.\left( {1 + i} \right)}}{{{{\left( {1 - i} \right)}^2}.\left( {1 - i} \right)}}\) \( = \dfrac{{{{\left( {2i} \right)}^2}\left( {1 + i} \right)}}{{\left( { - 2i} \right)\left( {1 - i} \right)}}\) \( = \dfrac{{ - 4\left( {1 + i} \right)}}{{ - 2\left( {1 + i} \right)}} = 2\) nên A sai.

Đáp án B:

\({\left( {1 + i} \right)^5} + {\left( {1 - i} \right)^5}\)\( = {\left( {1 + i} \right)^4}.\left( {1 + i} \right) + {\left( {1 - i} \right)^4}.\left( {1 - i} \right)\) \( = {\left( {2i} \right)^2}\left( {1 + i} \right) + {\left( { - 2i} \right)^2}\left( {1 - i} \right)\)

\( =  - 4\left( {1 + i} \right) - 4\left( {1 - i} \right)\) \( =  - 4 - 4i - 4 + 4i =  - 8 \in \mathbb{R}\)

B sai.

Đáp án C:

\(\dfrac{{1 + i}}{{1 - i}} + \dfrac{{1 - i}}{{1 + i}}\)\( = \dfrac{{{{\left( {1 + i} \right)}^2} + {{\left( {1 - i} \right)}^2}}}{{\left( {1 - i} \right)\left( {1 + i} \right)}} = \dfrac{{2i - 2i}}{{1 + 1}} = 0\) nên C sai.

Đáp án D:

\(\dfrac{{3 + 2i}}{{2 - i}} - \dfrac{{3 - 2i}}{{2 + i}}\)\( = \dfrac{{\left( {3 + 2i} \right)\left( {2 + i} \right) - \left( {3 - 2i} \right)\left( {2 - i} \right)}}{{\left( {2 - i} \right)\left( {2 + i} \right)}}\) \( = \dfrac{{6 - 2 + 7i - 6 + 2 + 7i}}{{4 + 1}} = \dfrac{{14}}{5}i\)

Chọn D.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập chương 4: Số phức

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài