Bài 4.45 trang 208 SBT giải tích 12


Giải bài 4.45 trang 208 sách bài tập giải tích 12.Số nào sau đây là số thực?...

Đề bài

Số nào sau đây là số thực?

A. \(\dfrac{{2 + i\sqrt 2 }}{{1 - i\sqrt 2 }} + \dfrac{{1 + i\sqrt 2 }}{{2 - i\sqrt 2 }}\)

B. \(\left( {2 + 3i} \right)\left( {3 - i} \right) + \left( {2 - 3i} \right)\left( {3 + i} \right)\)

C. \(\dfrac{{\left( {1 + i} \right)\left( {2 + i} \right)}}{{2 - i}} + \dfrac{{\left( {1 + i} \right)\left( {2 - i} \right)}}{{2 + i}}\)

D. \({\left( {2 + i\sqrt 3 } \right)^2} - {\left( {2 - i\sqrt 3 } \right)^2}\)

Phương pháp giải - Xem chi tiết

Thực hiện các phép toán ở mỗi đáp án và kiểm tra kết quả là số thực.

Lời giải chi tiết

Đáp án A: \(\dfrac{{2 + i\sqrt 2 }}{{1 - i\sqrt 2 }} + \dfrac{{1 + i\sqrt 2 }}{{2 - i\sqrt 2 }}\)\( = \dfrac{{\left( {2 + i\sqrt 2 } \right)\left( {2 - i\sqrt 2 } \right) + \left( {1 + i\sqrt 2 } \right)\left( {1 - i\sqrt 2 } \right)}}{{\left( {1 - i\sqrt 2 } \right)\left( {2 - i\sqrt 2 } \right)}}\) \( = \dfrac{{4 + 2 + 1 + 2}}{{2 - 3i\sqrt 2  - 2}}\) \( = \dfrac{9}{{ - 3i\sqrt 2 }} = \dfrac{{9i}}{{ - 3{i^2}\sqrt 2 }} = \dfrac{{3\sqrt 2 i}}{2}\)

A sai.

Đáp án B: \(\left( {2 + 3i} \right)\left( {3 - i} \right) + \left( {2 - 3i} \right)\left( {3 + i} \right)\)\( = 6 + 9i - 2i + 3 + 6 - 9i + 2i + 3\) \( = 18 \in \mathbb{R}\).

Chọn B.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập chương 4: Số phức

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài