Bài 3.24 trang 172 SBT giải tích 12


Giải bài 3.24 trang 172 sách bài tập giải tích 12. Hãy chỉ ra kết quả nào dưới đây đúng:...

Đề bài

Hãy chỉ ra kết quả nào dưới đây đúng:

a) \(\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx}  + \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{3\pi }}{2}} {\sin xdx}  + \int\limits_{\dfrac{{3\pi }}{2}}^{2\pi } {\sin xdx = 0} \)

b) \(\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt[3]{{\sin x}} - \sqrt[3]{{\cos x}}} \right)dx}  = 0\)

c) \(\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\ln \dfrac{{1 - x}}{{1 + x}}dx}  = 0\)

d) \(\int\limits_0^2 {\left( {\dfrac{1}{{1 + x + {x^2} + {x^3}}} + 1} \right)dx}  = 0\)

Phương pháp giải - Xem chi tiết

Xét tính đúng sai của mỗi đáp án bằng cách tính các tích phân, sử dụng kiến thức các bài tập trước đã làm.

Lời giải chi tiết

a) Đúng (vì vế trái bằng \(\int\limits_0^{2\pi } {\sin xdx = 0} \))

b) Đúng vì \(\int\limits_0^{\dfrac{\pi }{2}} {\sqrt[3]{{\sin x}}dx}  = \int\limits_0^{\dfrac{\pi }{2}} {\sqrt[3]{{\cos x}}dx} \) (theo bài 3.22) nên \(\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt[3]{{\sin x}} - \sqrt[3]{{\cos x}}} \right)dx}  = 0\).

c) Đúng vì hàm số \(f\left( x \right) = \ln \dfrac{{1 - x}}{{1 + x}}\) là hàm số lẻ nên \(\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\ln \dfrac{{1 - x}}{{1 + x}}dx}  = 0\) (theo bài 3.21).

Chú ý: Cách chứng minh hàm số lẻ: Kiểm tra \(f\left( { - x} \right) =  - f\left( x \right)\) trên tập xác định \(D\) đối xứng.

d) Sai: Vì \(1 + \dfrac{1}{{1 + x + {x^2} + {x^3}}} > 1,x \in {\rm{[}}0;2]\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Tích phân

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài