Bài 3.24 trang 172 SBT giải tích 12


Đề bài

Hãy chỉ ra kết quả nào dưới đây đúng:

a) \(\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx}  + \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{3\pi }}{2}} {\sin xdx}  + \int\limits_{\dfrac{{3\pi }}{2}}^{2\pi } {\sin xdx = 0} \)

b) \(\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt[3]{{\sin x}} - \sqrt[3]{{\cos x}}} \right)dx}  = 0\)

c) \(\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\ln \dfrac{{1 - x}}{{1 + x}}dx}  = 0\)

d) \(\int\limits_0^2 {\left( {\dfrac{1}{{1 + x + {x^2} + {x^3}}} + 1} \right)dx}  = 0\)

Phương pháp giải - Xem chi tiết

Xét tính đúng sai của mỗi đáp án bằng cách tính các tích phân, sử dụng kiến thức các bài tập trước đã làm.

Lời giải chi tiết

a) Đúng (vì vế trái bằng \(\int\limits_0^{2\pi } {\sin xdx = 0} \))

b) Đúng vì \(\int\limits_0^{\dfrac{\pi }{2}} {\sqrt[3]{{\sin x}}dx}  = \int\limits_0^{\dfrac{\pi }{2}} {\sqrt[3]{{\cos x}}dx} \) (theo bài 3.22) nên \(\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt[3]{{\sin x}} - \sqrt[3]{{\cos x}}} \right)dx}  = 0\).

c) Đúng vì hàm số \(f\left( x \right) = \ln \dfrac{{1 - x}}{{1 + x}}\) là hàm số lẻ nên \(\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\ln \dfrac{{1 - x}}{{1 + x}}dx}  = 0\) (theo bài 3.21).

Chú ý: Cách chứng minh hàm số lẻ: Kiểm tra \(f\left( { - x} \right) =  - f\left( x \right)\) trên tập xác định \(D\) đối xứng.

d) Sai: Vì \(1 + \dfrac{1}{{1 + x + {x^2} + {x^3}}} > 1,x \in {\rm{[}}0;2]\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.