Bài 3.24 trang 172 SBT giải tích 12


Giải bài 3.24 trang 172 sách bài tập giải tích 12. Hãy chỉ ra kết quả nào dưới đây đúng:...

Đề bài

Hãy chỉ ra kết quả nào dưới đây đúng:

a) \(\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx}  + \int\limits_{\dfrac{\pi }{2}}^{\dfrac{{3\pi }}{2}} {\sin xdx}  + \int\limits_{\dfrac{{3\pi }}{2}}^{2\pi } {\sin xdx = 0} \)

b) \(\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt[3]{{\sin x}} - \sqrt[3]{{\cos x}}} \right)dx}  = 0\)

c) \(\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\ln \dfrac{{1 - x}}{{1 + x}}dx}  = 0\)

d) \(\int\limits_0^2 {\left( {\dfrac{1}{{1 + x + {x^2} + {x^3}}} + 1} \right)dx}  = 0\)

Phương pháp giải - Xem chi tiết

Xét tính đúng sai của mỗi đáp án bằng cách tính các tích phân, sử dụng kiến thức các bài tập trước đã làm.

Lời giải chi tiết

a) Đúng (vì vế trái bằng \(\int\limits_0^{2\pi } {\sin xdx = 0} \))

b) Đúng vì \(\int\limits_0^{\dfrac{\pi }{2}} {\sqrt[3]{{\sin x}}dx}  = \int\limits_0^{\dfrac{\pi }{2}} {\sqrt[3]{{\cos x}}dx} \) (theo bài 3.22) nên \(\int\limits_0^{\dfrac{\pi }{2}} {\left( {\sqrt[3]{{\sin x}} - \sqrt[3]{{\cos x}}} \right)dx}  = 0\).

c) Đúng vì hàm số \(f\left( x \right) = \ln \dfrac{{1 - x}}{{1 + x}}\) là hàm số lẻ nên \(\int\limits_{ - \dfrac{1}{2}}^{\dfrac{1}{2}} {\ln \dfrac{{1 - x}}{{1 + x}}dx}  = 0\) (theo bài 3.21).

Chú ý: Cách chứng minh hàm số lẻ: Kiểm tra \(f\left( { - x} \right) =  - f\left( x \right)\) trên tập xác định \(D\) đối xứng.

d) Sai: Vì \(1 + \dfrac{1}{{1 + x + {x^2} + {x^3}}} > 1,x \in {\rm{[}}0;2]\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Tích phân

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài