Bài 3.23 trang 172 SBT giải tích 12


Giải bài 3.23 trang 172 sách bài tập giải tích 12. Đặt I_n=...

Lựa chọn câu để xem lời giải nhanh hơn

Đặt \({I_n} = \int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^n}xdx} ,n \in {N^*}\)

LG câu a

a) Chứng minh rằng \({I_n} = \dfrac{{n - 1}}{n}{I_{n - 2}},n > 2\)

Phương pháp giải:

Sử dụng phương pháp tích phân từng phần, đặt \(u = {\sin ^{n - 1}}x\) và \(dv = \sin xdx\)

Giải chi tiết:

Xét với \(n > 2\), ta có: \({I_n} = \int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^{n - 1}}x.\sin xdx} \)

Dùng tích phân từng phần với \(u = {\sin ^{n - 1}}x\) và \(dv = \sin xdx\), ta có: \(\left\{ \begin{array}{l}du = \left( {n - 1} \right){\sin ^{n - 2}}x\cos xdx\\v =  - \cos x\end{array} \right.\)

\({I_n} = \int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^{n - 1}}x\sin xdx} \)\( = \left. { - \cos x{{\sin }^{n - 1}}x} \right|_0^{\dfrac{\pi }{2}}\) \( + (n - 1)\int\limits_0^{\dfrac{\pi }{2}} {{{\sin }^{n - 2}}x{{\cos }^2}xdx} \)

\( = \left( {n - 1} \right)\int\limits_0^{\dfrac{\pi }{2}} {\left( {{{\sin }^{n - 2}}x - {{\sin }^n}x} \right)dx} \)\( = \left( {n - 1} \right){I_{n - 2}} - \left( {n - 1} \right){I_n}\)

Vậy \({I_n} = \dfrac{{n - 1}}{n}{I_{n - 2}}\)

LG câu b

b) Tính \({I_3}\) và \({I_5}\).

Phương pháp giải:

Thay \(n = 3,n = 5\) vào tính \({I_3},{I_5}\).

Giải chi tiết:

Ta có: \({I_1} = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \)\( = \left. { - \cos x} \right|_0^{\dfrac{\pi }{2}} = 1\).

Suy ra \({I_3} = \dfrac{{3 - 1}}{3}{I_1} = \dfrac{2}{3}.1 = \dfrac{2}{3}\); \({I_5} = \dfrac{{5 - 1}}{5}{I_3} = \dfrac{4}{5}.\dfrac{2}{3} = \dfrac{8}{{15}}\).

Vậy \({I_3} = \dfrac{2}{3},{I_5} = \dfrac{8}{{15}}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 2: Tích phân

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài