Bài 3.22 trang 172 SBT giải tích 12>
Giải bài 3.22 trang 172 sách bài tập giải tích 12. Giả sử hàm số f(x) liên tục trên đoạn [a; b]. Chứng minh rằng:...
Đề bài
Giả sử hàm số \(f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Chứng minh rằng: \(\int\limits_0^{\dfrac{\pi }{2}} {f(\sin x)dx} = \int\limits_0^{\dfrac{\pi }{2}} {f(\cos x)dx} \)
Phương pháp giải - Xem chi tiết
Đổi biến số \(x = \dfrac{\pi }{2} - t\) tính tích phân \(\int\limits_0^{\dfrac{\pi }{2}} {f(\sin x)dx} \)
Lời giải chi tiết
Đổi biến số \(x = \dfrac{\pi }{2} - t\), ta được: \(\int\limits_0^{\dfrac{\pi }{2}} {f(\sin x)dx} \)\( = - \int\limits_{\dfrac{\pi }{2}}^0 {f\left[ {\sin \left( {\dfrac{\pi }{2} - t} \right)} \right]dt} \) \( = \int\limits_0^{\dfrac{\pi }{2}} {f(\cos t)dt} \)
Hay \(\int\limits_0^{\dfrac{\pi }{2}} {f(\sin x)dx} = \int\limits_0^{\dfrac{\pi }{2}} {f(\cos x)dx} \)
Loigiaihay.com
- Bài 3.23 trang 172 SBT giải tích 12
- Bài 3.24 trang 172 SBT giải tích 12
- Bài 3.25 trang 173 SBT giải tích 12
- Bài 3.26 trang 173 SBT giải tích 12
- Bài 3.27 trang 173 SBT giải tích 12
>> Xem thêm