Bài 28 trang 98 Vở bài tập toán 9 tập 1


Giải bài 28 trang 98 VBT toán 9 tập 1. Giải tam giác ABC biết ABC là tam giác vuông tại A và...

Đề bài

Giải tam giác ABC biết ABC là tam giác vuông tại A và

 

a) \(b = 10cm,\,\,\widehat C = {30^o}\)

b) \(c = 10cm,\,\,\widehat C = {45^o}\)

c) \(a = 20cm,\,\,\widehat B = {35^o}\)

d) \(c = 21cm,\,\,b = 18cm\)

Phương pháp giải - Xem chi tiết

- Vận dụng kiến thức về định lí tổng ba góc trong một tam giác và hệ thức về cạnh và góc trong tam giác vuông để tìm góc và độ dài các cạnh còn thiếu. 

Lời giải chi tiết

a) Ta có : \(\widehat B = {90^o} - \widehat C = {90^o} - {30^o} = {60^o}.\)

\(c = b.\tan C = 10 \cdot \dfrac{{\sqrt 3 }}{3} \approx 5,77\left( {cm} \right).\)

\(a = b:\cos C = 10:\cos {30^o} \approx 11,55\left( {cm} \right).\)

b) Ta có :

\(\widehat B = {90^o} - \widehat C \)\(= {90^o} - {45^o} = {45^o}.\)

Suy ra tam giác \(ABC\) là tam giác vuông cân. Bởi vậy \(b = c = 10cm;\) \(a = \sqrt {{{10}^2} + {{10}^2}}  \approx 14,14\left( {cm} \right).\)

c) Ta có : \(\widehat C = {90^o} - \widehat B \)\(= {90^o} - {35^o} = {55^o};\)

\(b = a.\sin B = 20.\sin {35^o} \approx 11,47\left( {cm} \right);\)

\(c = a.\cos B = 20.\cos {35^o} = 16,38\left( {cm} \right).\)

d) Ta có

\(\tan B = \dfrac{b}{c} = \dfrac{{18}}{{21}} \approx 086 \)\(\Rightarrow \widehat B \approx {40^o}36';\)

\(\widehat C = {90^o} - \widehat B\)\( \approx {90^o} - {40^o}36' = {49^o}24';\)

\(a = \sqrt {{b^2} + {c^2}}  = \sqrt {{{18}^2} + {{21}^2}} \)\( \approx 27,66\left( {cm} \right).\)

Loigiaihay.com


Bình chọn:
4.4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí