Bài 2.33 trang 64 SBT hình học 12


Giải bài 2.33 trang 64 sách bài tập hình học 12. Cho hình lập phương có cạnh bằng a và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương...

Đề bài

Cho hình lập phương có cạnh bằng \(a\) và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. Gọi \({S_1}\) là diện tích 6 mặt của hình lập phương, \({S_2}\) là diện tích xung quanh của hình trụ. Tỉ số \(\dfrac{{{S_2}}}{{{S_1}}}\) bằng:

A. \(\dfrac{\pi }{6}\)                       B. \(\dfrac{1}{2}\)

C. \(\dfrac{\pi }{2}\)                       D. \(\pi \)

Phương pháp giải - Xem chi tiết

- Tính diện tích toàn phần hình lập phương \(S = 6{a^2}\).

- Tính diện tích xung quanh hình trụ \(S = 2\pi rh\) và suy ra đáp án.

Lời giải chi tiết

Diện tích hình lập phương là \({S_1} = 6{a^2}\).

Bán kính đáy hình trụ: \(r = \dfrac{a}{2}\).

Diện tích xung quanh hình trụ là: \({S_2} = 2\pi rh = 2\pi .\dfrac{a}{2}.a = \pi {a^2}\)

Vậy \(\dfrac{{{S_2}}}{{{S_1}}} = \dfrac{{\pi {a^2}}}{{6{a^2}}} = \dfrac{\pi }{6}\).

Chọn A.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài