Bài 20 trang 21 Vở bài tập toán 9 tập 1


Giải bài 20 trang 21 VBT toán 9 tập 1. a) So sánh ...

Đề bài

a) So sánh \(\sqrt {25 - 16} \) với \(\sqrt {25}  - \sqrt {16} \)

b) Chứng minh rằng với a > b > 0 thì \(\sqrt a  - \sqrt b  < \sqrt {a - b} \) 

Phương pháp giải - Xem chi tiết

- Tính giá trị hai biểu thức rồi so sánh.

- Biến đổi bất đẳng thức cần chứng minh tương đương với một bất đẳng thức đúng dạng \({A^2} \ge 0\)

Lời giải chi tiết

a) \(\sqrt {25 - 16}  = \sqrt 9  = 3\)

\(\sqrt {25}  - \sqrt {16}  = 5 - 4 = 1\)

Rõ ràng \(3 > 1\) nên \(\sqrt {25 - 16}  > \sqrt {25}  - \sqrt {16} \)

b) Bài ra cho \(a > b > 0\) nên \(\sqrt a ,\sqrt b \) và \(\sqrt {a - b} \) đều xác định và dương.

Ta sẽ so sánh \(\sqrt a \) với \(\sqrt {a - b}  + \sqrt b \)

Ta có \(\sqrt {a - b}  + \sqrt b \) là số dương và

\({\left( {\sqrt {a - b}  + \sqrt b } \right)^2} \)\(= a - b + 2\sqrt {b\left( {a - b} \right)}  + b \)\(= a + 2\sqrt {b\left( {a - b} \right)} \) 

Rõ ràng  \(2\sqrt {b(a - b)}  > 0\) nên \({\left( {\sqrt {a - b}  + \sqrt b } \right)^2} > a\)   (1)

Ta có \(\sqrt a \) là số không âm và \({\left( {\sqrt a } \right)^2} = a\)  (2)

Từ (1) và (2) suy ra

\({\left( {\sqrt {a - b}  + \sqrt b } \right)^2} > {\left( {\sqrt a } \right)^2}\)      (3)

Từ (3) theo định lí so sánh các căn bậc hai số học, ta suy ra

\(\sqrt {{{\left( {\sqrt {a - b}  + \sqrt b } \right)}^2}}  > \sqrt {{{\left( {\sqrt a } \right)}^2}} \)

Hay \(\left| {\sqrt {a - b}  + \sqrt b } \right| > \left| {\sqrt a } \right|\)

Hay \(\sqrt {a - b}  + \sqrt b  > \sqrt a \)

Từ kết quả \(\sqrt a  < \sqrt {a - b}  + \sqrt b \), ta có \(\sqrt a  - \sqrt b  < \sqrt {a - b} \)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài